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The Te profile is observed to broaden with increasing beam power PNB, in the 
standard NSTX H-mode. The power balance indicates this is due to a large increase in 
electron transport, while perturbative experiments support this conclusion. 

To separate the roles of PNB and q(r) in this  effect, we performed experiments 
in which the plasma is preheated throughout a current  diffusion time and PNB varied to 
change the electron heating.  The equilibrium and perturbed electron transport are then 
assessed at about one beam slowing time after the PNB variation.

The results at fixed-q show that at high power the central  χe reaches very large 
values, while at reduced power it decreases. The trends are confirmed by perturbative 
experiments, suggesting a low critical Te gradient in the central NSTX plasma. 
In addition, the electron transport correlates rather with heating power than with  Te
gradient, suggesting the heat flux itself may be a driving factor.

The q(r) change at fixed PNB has also profound effects on electron transport. 
Large central χe,, together with global, fast Te perturbations are observed with the narrow 
q(r) resulting at high power preheat. With the broad, slightly reversed q(r) obtained at 
low preheat power, the central χe strongly decreases and the cold pulse slows down or 
reverses inside q=2 and q=1, suggesting a role for rational surfaces in NSTX transport.
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Te profile broadens with PNB in NSTX

1 MA, 4.5 kG, ELM-free/small-ELM H-modes, t=0.4 s
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• Results of TRANSP analysis with classical thermalization of NBI ions

• χi remains close to  neoclassical level  

• Negligible low frequency (<20 kHz) MHD, but high frequency CAE and  EPM 

activity apparent on dB/dt signals  

• Could affect profile of heating power be redistributing fast ions



Analysis suggests power balance correct  
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• Fast ion diffusivity increased in TRANSP to study effects of fast ion redistribution

• Order of magnitude increase in Dfast does not change χe much, while neutron rate 

decreases well below experiment

• Conclusion holds even when Dfast increase limited to r/a < 0.5
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Perturbative experiments also support power balance

before pellet

4 ms after

Te perturbation from 3 mg Li pellet

• Global, rapid Te perturbation at high PNB

• Only peripheral perturbation at reduced PNB
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Experiment I: Vary electron heating at fixed q-profile

• Both PNB and q vary in the above

(large q effects, see below)

• Simple experiment to study effect of 

electron heating at fixed-q:

- preheat to ‘freeze-in’ q  

- vary PNB

- measure equilibrium and perturbed 

electron transport after one beam 

slowing time
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4 -> 6
4 -> 2

• ωExB, ne,  also kept fixed

H

Large change in electron heating achieved at fixed-q
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Electron transport changes strongly with heating power

• Te profile broadens at high PNB, narrows at reduced PNB

• Power balance shows large increase in core χe (r/a < 0.6) with increasing PNB

• Effect now clearly correlated with change in electron heating 
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Pellet perturbation also used to probe electron transport

Center stack

0.5 mg Li
@100 m/s

• Pellet ablates near edge

• Small density perturbation

• Only few % equilibrium change
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Pinholes
with filters

30 µm CsI:Tl

FO vacuum window to multi-channel PMT
and current amplifiers

Optic 
fibersE >0.6 keV

E >1.4 keV
E >2.2 keV

E > 0.6 keV

E > 1.4 keV

E > 1.4 keV

0

Poloidal SXR diode arrays Tangential ‘optical’ SXR array

‘Multi-color’ SXR arrays used for fast Te measurements
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Perturbative picture consistent with  power balance

• In 4->6 case the cold pulse reaches plasma axis in ~ 2 ms

• In 4->2 case pulse strongly damped inside r/a < 0.6, faster recovery of perturbed 

profiles in the outer plasma

• Rapid electron transport at high PNB confirmed also by ELM cold pulse

(K. Tritz, this meeting)
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Critical Te gradient in Tore Supra
(Hoang et al PoP 03)

Critical Te gradient in NSTX

r/a~ 0.4
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Results suggest low |∇Te | crit. in NSTX core  
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• Higher Bt may improve electron transport in NSTX (S. Kaye et al, NF07)
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• Transport level does not correlate with Te gradient, but with heating level

• Heat flux driven transport in ‘avalanche’ models (e.g., Garbet and Waltz, PoP98)

• Might explain rapid transport with little thermal gradient in NSTX center, inside ITBs

Is heat flux driving electron transport ?
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6 -> 4
2 -> 4

H

q(r) t=0.44 s
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Experiment II: Vary q-profile at fixed electron heating
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• Vary Ppreheat to vary q  -> bring PNB to common 
level -> measure transport

• Different q(r) at comparable heating, ωEXB, ~ ne12
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6 -> 4

2 -> 4

Ti (keV) χe (m2/s)

Electron transport changes strongly also with q-profile

• Within uncertainties ion transport follows similar trend
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Perturbative transport also exhibits q-profile effects

• Rapid, global propagation with the q-profile produced at high Ppreheat

• Slow propagation inside q=2, ‘polarity reversal’ inside q=1 with q-profile at low Ppreheat

• Role of low order rational-q surfaces in NSTX electron transport?
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Role of rational-q evident also in negative shear L-mode
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2 MW, low ne L-mode (112989)

• Spontaneous Te increases when q approaches rational values

• Zonal flow/magnetic geometry effect (M. Austin et al PoP 2006)

• NSTX good test bed for zonal flow physics (~ρ∗)
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Magnetic or high-k transport behind large central  χe?

• DNeon ~ neoclassical (< 1 m2/s) in high PNB H-modes (L. Delgado this meeting) 

• Anomalous transport from low-k electrostatic turbulence likely suppressed

• χe >>  DNeon -> high-k electrostatic, or magnetic electron transport

• µ-tearing predicted to be active in NSTX H-modes (K. Wong this meeting)
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GS2 calculations also point to µ-tearing drive
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• Linear calculations can only indicate trends (2->4 case has in fact  lower χe)

• Magnetic and Te fluctuation diagnostics, non-linear EM calculations needed 

S. Kaye, PPPL
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Summary

• Simple technique used to study  electron transport vs. heating power and q in H-mode 

• Te broadening with PNB consistent with low critical gradient in core plasma 

• Heat flux may be driving electron transport in regions with flat Te

• Indications for ITB formation  at low order rational-q surfaces

• μ-tearing simple explanation for electron transport much more rapid than particle one


