

The response of tokamak plasmas to 3D magnetic field perturbations

J.E. Menard, PPPL

with contributions from:

J.-K. Park, A.H. Boozer, M. Bécoulet, M. Chance, C.-S. Chang, T. Evans, D.A. Gates, S.P. Gerhardt, A.G. Glasser, R.J. Hawryluk, S.R. Hudson, G.-Y. Park, S.A. Sabbagh, M.J. Schaffer, and the NSTX Research Team

> 35th EPS Plasma Physics Conference June 9-13, 2008 Hersonissos, Crete, Greece

- Ideal Perturbed Equilibrium Code (IPEC)
 - Developed by J.-K. Park, PPPL (Ph.D. thesis)
 - New tool for studying 3D field effects in tokamaks
- Applications of IPEC
 - Locked modes, toroidal flow damping, ITER ELM control
- NSTX: Importance of n > 1 error fields

IPEC computes tokamak ideal plasma response to 3D fields

- Augments DCON + VACUUM with external field while preserving $q(\psi)$, $p(\psi)$
 - Equivalent surface current supports perturbed plasma equilibrium:

 $\vec{f}_{ideal}(\vec{\xi}) = \vec{0} = \vec{\nabla}\delta p + \delta \vec{J} \times \vec{B} + \vec{J} \times \delta \vec{B}$

- DCON/IPEC solutions preserve magnetic topology → singular currents flow on q surfaces to shield out islands otherwise excited by external δB
 - Treat solutions as equivalent to resistive plasma with islands shielded by flow

- Poloidal mode coupling due to toroidicity
 - External field of given helicity excites different helicity inside plasma
 - Important for locked-modes/error-fields, especially at low aspect ratio
- Lagrangian field modification: $\delta B_L(\vec{x} + \delta \vec{x}) = \delta B(\vec{x}) + \vec{\xi}(\vec{x}) \cdot \vec{\nabla} B(\vec{x})$
 - Flux-surface displacement important in Lagrangian δB_L
 - Important for neoclassical toroidal viscosity model of rotation damping
- Field amplification from finite β and J_{\parallel}
 - IPEC assumptions and solutions valid for β below ideal no-wall limit
 - IPEC requires usage of dissipation model to achieve equilibrium (and reasonable amplification values) when used above ideal no-wall limit
 - Important for all applications involving field amplitude

- Ideal Perturbed Equilibrium Code (IPEC)
 New tool for studying 3D field effects in tokamaks
- Applications of IPEC
 - Locked modes, toroidal flow damping, ITER ELM control
- NSTX: Importance of n > 1 error fields

IPEC computes the singular currents and total resonant normal fields important in mode locking physics

• Singular currents computed from jump in derivative of normal B

$$\boldsymbol{j}_{sing} \propto \Delta_{mn} \qquad \Delta_{mn} = \left[\frac{\partial}{\partial \psi} \left(\frac{\delta \boldsymbol{\vec{B}} \cdot \boldsymbol{\vec{\nabla}} \psi}{\boldsymbol{\vec{B}} \cdot \boldsymbol{\vec{\nabla}} \phi}\right)\right]_{mn}$$

• Singular currents well defined and very well resolved by DCON

• The total resonant magnetic field $\left(\delta \vec{B} \cdot \hat{n}\right)_{mn}$ from the j_{sing} shielding out islands <u>can differ significantly</u> from the applied vacuum resonant field

NSTX locked mode (LM) studies test locking theories in an extended parameter regime, and establish scalings for the ST

IPEC results help determine which magnetic shear parameters best correlate with n=1 locked-mode threshold

q₉₅, q*, l_i not good shear parameters

 Unphysical (quadratic) scaling with n_e
 Large fit error in B_T scaling exponent

- Local shear at q=2, 3 better parameters
 - Obtain expected linear scaling with n_e
 - $-3 \times$ smaller error in B_T scaling exponent

IPEC + NSTX LM fits using shear at q=2 \rightarrow linear n_e and inverse B_T scaling consistent with higher-A, B_T tokamaks and recent theory

Data also allows assessment of impact of different calculations of perturbed B-field:

Vacuum δB_{\perp} (most commonly used) Vacuum perturbed helical flux $\delta \psi_h$ Include plasma response (IPEC)

Assume size scaling coefficient: $\alpha_{R} = 2\alpha_{n} + 1.25\alpha_{B}$ (Connor-Taylor invariance)

 $\begin{array}{l} \underline{\text{Mean coefficients using q=2 and 3:}} \\ \alpha_{n} = \ 0.73 \quad \alpha_{B} = -0.50 \quad \alpha_{R} = \ 0.85 \\ \alpha_{n} = \ 0.91 \quad \alpha_{B} = -0.93 \quad \alpha_{R} = \ 0.66 \\ \alpha_{n} = \ 1.07 \quad \alpha_{B} = -0.99 \quad \alpha_{R} = \ 0.90 \end{array}$

IPEC-derived coefficients are the most consistent with recent theory by A. Cole:

$$\frac{V_{r,nm}}{B_{\phi}} \Big|_{\text{crit}} \propto n_e B_{\phi}^{-1.3} R_0 \tau_V^{-1/2} \sigma.$$

PRL **99,** 065001 (2007)

June 13, 2008

Extrapolation to ITER from NSTX data illustrates the importance of the plasma response, and has favorable projection for ITER

- Ideal Perturbed Equilibrium Code (IPEC)
 New tool for studying 3D field effects in tokamaks
- Applications of IPEC

- Locked modes, toroidal flow damping, ITER ELM control

• NSTX: Importance of n > 1 error fields

Neoclassical Toroidal Viscosity (NTV) calculation highlights importance of plasma response, Lagrangian δ B, and low v_i

Initial comparisons between experiment and NTV theory show some agreement, but questions remain

- DIII-D damping time consistent with v-regime NTV using IPEC Lagrangian δB
- NSTX consistent with 1/v regime in core, but may actually be in v regime...

• More complete theory is under development to address:

- v regime fluxes singular as trapped-passing boundary approached $\rightarrow v^{1/2}$ regime
- Significant overlap in relevant frequencies (v_{eff} , ω_{b} , ω_{ExB} , ...)

3D kinetic code XGC0 shows qualitative agreement with NSTX experiment when IPEC plasma response is used

- n=3 rotation damping observed in experiment stronger in plasma core
- Vacuum RMP causes *increase* in rotation in edge region inconsisent
- IPEC RMP shows little damping in edge, stronger in core consistent

- Ideal Perturbed Equilibrium Code (IPEC)
 New tool for studying 3D field effects in tokamaks
- Applications of IPEC

- Locked modes, toroidal flow damping, ITER ELM control

• NSTX: Importance of n > 1 error fields

IPEC calculation of ergodization in pedestal region consistent with observed DIII-D ELM suppression with RMP

Is small region of good surfaces needed to retain H-mode w/o ELMs?
To what extent does rotation shield resonant RMP fields in pedestal?

IPEC RMP optimization algorithm aims to ergodize edge while minimizing core flow damping

RMP optimization constraints:

- 1. Generate edge perturbation sufficient to satisfy Chirikov > 1 - $W_{island} \propto SQRT(\delta \vec{B} \cdot \hat{n})_{mn}$
- 2. Minimize NTV torque $\propto |\delta B_L|^2_{m,n}$

- **IPEC constraints:** determine external field spectrum that maximizes/minimizes total resonant δB_{mn} in particular region
 - Utilizes the linear matrix relationship between total & external fields:

$$\left(\delta \vec{B} \cdot \hat{n}\right)_{mn} = \left(\vec{C}\right)_{mm'n} \left(\delta \vec{B}^{x} \cdot \hat{n}_{b}\right)_{m'n}$$

ITER optimal field distribution has robust off-midplane structure

Midplane + off-midplane coils in ITER can satisfy ergodization criterion while maximizing core rotation damping times

- Ideal Perturbed Equilibrium Code (IPEC)
 New tool for studying 3D field effects in tokamaks
- Applications of IPEC

- Locked modes, toroidal flow damping, ITER ELM control

• NSTX: Importance of n > 1 error fields

NSTX observes high-*n* (*n*=3) error fields important at high β_N

• *n* > 1 error fields not commonly addressed in present devices, or in ITER

In the n=3 EFC experiments, edge rotation for ρ > 0.75 determines stability of discharges and resultant pulse-length

 Discharges in n=3 EFC studies have low rotation at low-order rationals relative to high rotation in core

- Core:
$$\Omega_{\phi} \tau_{A} = 18\%$$

- q=2:
$$\Omega_{\phi}\tau_{A} = 4\%$$
 (4.5 × lower)

- q=3:
$$\Omega_{\phi}\tau_{A} = 0.4-1\%$$
 (18-45 × lower)

 n=3 EFC increases the rotation primarily on surfaces with q ≥ 3
 With n=3 EFC, rotation is sufficient to stabilize n=1 RWM

> Without n=3 EFC, rotation is lower and discharge has RWM disruption

n=3 EFC experiments also enable comparison to n=1 RWM theory → MARS-F underestimates n=1 RWM critical rotation for NSTX

• Passing particles dominate dissipation, create local minima in γ vs. rotation

• Several kinetic effects ignored in MARS-F (ω_{diam} , drift precession, etc...) – Kinetic effects have been theoretically shown to provide stabilization at low Ω_{ϕ} – But, can kinetic effects be <u>destabilizing</u> at high rotation?

Another possibility: collisions reduce stabilization by barely-passing ions

- Ion collisionality $v_i^* \rightarrow 1$ for $q \ge 4$ at large r/a in NSTX

n=3 EF correction combined with n=1 RFA/RWM feedback and Li wall conditioning extends NSTX sustained high- β_N

New understanding of the impact of 3D magnetic field perturbations on tokamak plasmas has been obtained

- Importance of plasma response effects clarified with Ideal Perturbed Equilibrium Code (IPEC)
 - Poloidal mode coupling
 - Lagrangian field modification
 - Amplification
- IPEC has been successfully applied to experiment
 LM thresholds, NTV theory tests, RMP ELM control
- n > 1 error fields can be important at high β_N
 Error fields can reduce rotation, destabilize n=1 RWM
 - Observe $q \ge 3$ surfaces can determine n=1 RWM stability