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Understanding the momentum transport is one of
highlighted issues of current fusion research

Toroidal momentum transport exhibits very complex phenomenology

• Toroidal momentum transport is always highly anomalous regardless of
whether ion energy transport is anomalous or neoclassical

• Finding of intrinsic or spontaneous rotation (Rice et al. ’04)

critical for ITER

• Development of intrinsic rotation requires mechanisms to generate a flow
and rearrange its profile radially

• A generic structure of toroidal momentum flux (Diamond et al. ’08)

Γφ ∝ −χφ
∂Uφ

∂r
+ VpUφ + Πresid

r,φ

Searching for nondiffusive elements and understanding underlying mechanisms
have been the focus of recent intensive theoretical and experimental effort
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Outline and Principle Results

I. Gyrokinetic simulation models of rotating plasmas

II. Gyrokinetic turbulence driven toroidal momentum transport

– via GTS simulations

• An inward non-diffusive momentum flux, driven by ITG turbulence,
found to cause core plasma rotation spin up

• Discovery of residual stress due to k‖ symmetry breaking induced by
global quasi-stationary ZF shear

• Phase space structure of momentum and energy flux

• Impact of trapped electron dynamics

III. Residual fluctuations and effects in strong equilibrium E × B flow shear

• Residual fluctuations survive strong E × B shear induced dissipation

• ⇒ Co-existence of anomalous momentum and NC-level ion heat flux
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I. Simulation models for rotating plasmas

• Gyrokinetic Tokamak Simulation (GTS) code: generalized gyrokinetic
simulation model; PIC approach; global simulation

• Turbulence fluctuation is perturbation on top of neoclassical equilibrium

• GTC-NEO =⇒ Neoclassical equilibrium f0, Φ0 and transport

Non-local physics associated with large ion orbits and steep gradients

• Lowest order equilibrium solution for rotating plasma (used in GTS):

f0 = fSM = n(r, θ)(
mi

2πTi
)3/2e

−mi
Ti

[ 12 (v‖−Ui)
2+μB]

parallel flow: Ui = Iωt/B, density: n(r, θ) = N(r)e
miU2

i
2Ti

− eΦ̃0
Ti

• {〈n(r, θ)〉, T (r), Φ0(r), and ωt(r)} =⇒ turbulence & transport

(energy, particle and momentum flux)

• Interfaced with MHD equilibrium codes (based on ESI interface by
Zakharov and White) and experimental data base via TRANSP

• GTS turbulence simulation is interfaced with GTC-NEO simulation
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II. Large inward toroidal angular momentum flux found
in post-saturation phase – rigid rotation with ωφ �= 0
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• Large, non-diffusive, inward
toroidal momentum flux
driven by ITG turbulence in
post-saturation phase

• Core plasma spins up with
Δu‖ few % of local vth (no
momentum source at edge)

• Global momentum
conservation approximately
maintained

• In long term steady state Γφ

decays to small (or zero) level
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Inward Non-diffusive momentum flux is driven
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• initial u‖ ∼ 0.1vth

• Γφ in post-saturation phase in direction opposite to momentum diffusion
(i.e., same direction as rotation gradient)

• Net Γφ reverses to diffusive direction in long-time steady state

• Strong coupling between momentum and energy transport with
χeff

φ /χi ∼ 1, in broad agreement with tokamak experiments[Scott et al.’90]
and early ITG theory [Mattor-Diamond, ’88]
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What is the inward momentum flux:
pinch? off-diagonal (residual stress)? or ... ?

• Radial flux of toroidal angular momentum:

Γφ ∝ −χφ
∂Uφ

∂r
+ VpUφ + Πresid

r,φ

• Nondiffusive flux needs a mechanism for k‖-symmetry breaking

mean E×B velocity shear ⇒ 〈
k‖

〉 �= 0 → Πresid
r,φ (Gurcan et al. ’07, ...)

b · ∇b ↔ ballooning mode structure → Vp (Hahm et al. ’07)

· · ·
• Experimental identification is highly interesting but not easy

• Off-diagonal flux robustly observed in various simulation experiments:

different machines size and plasma parameters

with or w/o equilibrium E × B, toroidal rotation, rotation gradient

• =⇒ Suggest the existence of a novel mechanism
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Global quasi-stationary zonal flow is observed

• Self-generated zonal flow is quasi-stationary in global ITG simulations

→ showing existence of toroidal zonal flow

• Slow varying large scale ZF structure experimentally identified recently in
drift wave turbulence (Tynan et al. IAEA’08)

• Effect on k‖ spectrum?
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Residual stress is nonlinearly generated
due to zonal flow shear
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• ωφ = 0 case ⇒ neither momentum diffusion nor pinch is driven

• Nonlinear residual stress generation is found due to k‖ symmetry breaking
induced by self-generated quasi-stationary ZF shear

• A universal mechanism to drive Πresid
r,φ ∼ ∇Ti via dependence on δΦ2

〈k‖〉 ≡
∑

(nq − m)δΦ2
mn

qR0

∑
δΦ2

mn

(Wang et al., PRL’09)
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Which and how particles contribute to momentum
transport: resonance and non-resonance

• at r/a = 0.54,
θ = 0 (mid-plane)
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Interesting phase space structure is fairly persistent
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Which and how particles contribute to energy transport:
resonance and non-resonance

Resonance condition: ω − ωdi(v2
‖) − ω∇B(μ) − k‖v‖ = 0
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Effects of electron dynamics: ITG case with ωφ = 0
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• Finer radial scale introduced into ZF by electron dynamics (left fig.)

• Large outward momentum flux driven by residual stress at most minor
radii (right fig.)

• Generation of residual stress is due to k‖ symmetry breaking (middle fig.)

• Q: what determine sign of non-diffusive momentum flux – may to do with
details of turbulence spectrum?
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Trapped electron physics plays a critical role
in producing right transport in experiments
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with kinetic electrons

with adiabatic electrons

• Ion transport dominated DIII-D discharge with low toroidal rotation

• ITG turbulence fluctuations largely enhanced by trapped (non-adiabatic)
electrons

• A critical role in accounting for experimental qi in outer core region
(where ITG is marginal or stable)

• Toroidal momentum flux is largely increased too
(in a region with small, flat rotation profile, implying a residual stress
or/and pinch)
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But trapped electrons do not significantly change phase
space structure of momentum flux of ITG turbulence

– ITG turbulence
– at θ = 0 (mid-plane)

with kinetic electrons

with adiab. electrons
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Highly distinct phase space structures of momentum
(and other) flux are shown for TEM turbulence

– CTEM turbulence
– at θ = 0 (mid-plane)

∇Te-driven

∇n-driven

Compared to ITG case, TEM turbulence driven momentum transport
is made by ions from different regions, and in a different way!
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III. Residual fluctuations are found to exist in the
presence of strong mean E × B flow shear
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• Strong toroidal rotation and E × B flow are driven by neutral beam
injection ⇒ stabilize ITG linearly

• However, E × B shear induced dissipation is fluctuation-mode-dependent:

more efficient on lower kr linear eigenmodes

less efficient on higher kr saturated fluctuations

• Finite residual fluctuations with higher kr can survive strong mean E × B
flow shear induced damping
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Residual turbulence may drive experimentally relevant
toroidal momentum and energy transport
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Residual turbulence may account for puzzling
co-existence of neoclassical-level ion heat and
anomalous momentum transport

• Distinct relationship between momentum
and energy transport:

for low-k fluctuations, χeff
φ ∼ χi

neoclassically χeff
φ ∼ (0.01 − 0.1)χi

• Residual fluctuations may drive finite
transport:

χturb
i � χnc

i (NC-level ion heat flux)

χturb
φ ∼ χturb

i ∼ 40χnc
φ (highly anomalous)
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Summary – turbulence driven nondiffusive momentum
transport

• A large inward flux of toroidal momentum is driven robustly in the
post-saturation phase of ITG turbulence, leading to core rotation spin up
with Δu‖ ∼ few % of vth (in the case of no momentum source at the edge)

• The underlying dynamics is the nonlinear generation of residual stress due
to the k‖ symmetry breaking induced by global quasi-stationary zonal flow
shear.

• Net momentum flux in the long-time steady state appears to be diffusion
dominated with strong coupling with ion heat flux, χeff

φ ∼ χi.

(consistent with experiments and ITG theory)

• Momentum and energy flux show fairly persistent phase space structures

(with a lot of interesting details · · · )

• Trapped electron physics may change stories significantly ...
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Summary – Residual turbulence and its effect

• Residual fluctuations can survive in a strong mean E×B flow shear and
drive experimentally relevant momentum and energy transport

(the E×B shear induced dissipation is mode-dependent!)

=⇒ one possible explanation to the puzzle of co-existence of
neoclassical-level ion heat and anomalous momentum transport in
experiments

• Ongoing simulation study: residual TEM turbulence and driven transport
in NSTX (strong rotation and E×B shear, ITG is very minor player)
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