

High flux expansion divertor studies in NSTX

V. A. Soukhanovskii¹, R. Maingi², R. E. Bell³, D. A. Gates³, R. Kaita³, H. W. Kugel³, B. P. LeBlanc³, R. Maqueda⁴, J. E. Menard³, D. Mueller³, S. F. Paul³, R. Raman⁵, A. L. Roquemore³

¹ Lawrence Livermore National Laboratory Livermore CA USA	
² Oak Ridge National Laboratory, Oak Ridge, TN, USA	Poster
³ Princeton Plasma Physics Laboratory, Princeton, NJ, USA	1 00101
⁴ Nova Photonics, LLC	P2 178
^o University of Wasnington, Seattle, WA, USA	1 2.170

36th EPS Conference on Plasma Physics

June 29 - July 3, 2009, Sofia, Bulgaria

- High flux expansion divertor studies have been carried out in NSTX using steady-state X-point height variations from 22 to 5-6 cm
- Small-ELM H-mode confinement was maintained at all Xpoint heights
- Flux expansions from 6 to 26-28 were obtained, with associated reduction in X-point connection length from 5-6 m to 2 m. Peak heat flux was reduced from 7-8 MW/m² to 1-2 MW/m². In low X-point configuration, outer strike point became nearly detached
- Among factors affecting deposition of parallel heat flux in the divertor, the flux expansion factor appeared to be dominant

Experiments in NSTX demonstrated several ways of divertor peak heat flux reduction in ST

Divertor heat flux mitigation solutions:

- \checkmark Poloidal flux expansion at outer strike point (OSP)
 - Particularly well suited for STs, reduced q_{peak} by up to 50 % in NSTX
- ✓ Strike point sweeping (Plasma stability and control issues?)
- ✓ Radiative divertor
 - reduced q_{peak} by up to 60 % in NSTX with D₂ injection while maintaining good confinement
- ✓ Radiative mantle
 - reduced q_{peak} by up to 50 % in NSTX (w/ neon) albeit confinement degradation
- ✓ Divertor materials and geometry (plate tilt, closure, number of divertors...)
- These solutions must be compatible with good core plasma performance (H-mode confinement, MHD, ELM regime, density)
- Solutions must scale to very high q_{peak} (15 60 MW/m²) for future devices (e.g., NHTX, ST-CTF)
 - Combinations of solutions may work

SOL / divertor geometric properties are different in spherical tori and large aspect ratio tokamaks

Open geometry NSTX divertor enables flexibility in plasma shaping

- Plasma facing components
 - ATJ and CFC tiles
 - Carbon erosion, sputtering
 - Max P_{rad} fraction limited by carbon radiation efficiency
 - Typical divertor tile temperature in 1 s pulses T < 500 C (q_{peak} ≤ 10 MW/m²)
- No active divertor pumping
 - Experiments with lithium coatings for reduced recycling

Multiple diagnostic measurements are analyzed to elucidate on divertor physics in NSTX

- Diagnostic set for divertor studies:
 - IR cameras
 - Bolometers
 - Neutral pressure gauges
 - Tile Langmuir probes
 - $D\alpha$, $D\gamma$ filtered CCD arrays
 - UV-VIS spectrometer (10 divertor chords)
- Midplane Thomson scattering and CHERS systems
- Divertor gas injector Γ_{gas} = 20-200 Torr I / s

Steady-state H-mode discharges with various X-point heights were obtained

- X-point height was changed by shifting the plasma up and down by several cm using PF1A divertor coil
- Plasma shape parameters were maintained
 - elongation 2.20-2.40, triangularity 0.7-0.85, drsep ~ 5 10 mm

Low (6-7 cm)

Medium (9-12 cm)

High (20-22 cm)

Divertor poloidal magnetic flux and area expansion scans were carried out in experiment

X-point height variation between 6 and 22 cm resulted in large variations of divertor geometry

X-point connection length was reduced by x 3 in the X-point scan

 Midplane to divertor ("total") connection length remained nearly constant 15+/- 3 m

NSTX divertor geometry studies

Relation between q_{\parallel} and q_{peak}

- Flux expansion
- Private flux region transport
- Heat conduction losses
- Dissipative losses

NSTX Lawrence Livermore National Laboratory

Divertor poloidal flux expansion: $f_{exp} = (B_{\theta} / B_{tot})^{MP-SEP} / (B_{\theta} / B_{tot})^{OSP}$

- Study as a function of f_m and L_X
 - Power balance, divertor heat flux
 - Ion momentum balance
 - Recycling, carbon sputtering and recombination rates
 - Neutrals behavior, plasma "plugging effect"
 - Role of gyro-radius and mean free path effects
- Goal understand and predict divertor heat flux transport for heat handling and particle pumping
 - Performance and limitations of X-, super-X and "snowflake" divertors with very high flux expansion

H-mode core plasma parameters varied modestly with X-point height variations

Low (6-7 cm)

Medium (9-12 cm)

High (20-22 cm)

- Visible differences in n_e, n_C due to midplane (Z=0) Thomson scattering and Charge exchange recombination spectroscopy measurement position
- Small ELM regime was maintained as pedestal parameters varied little
- Presented profiles and data between 0.4 s and 0.5 s (yellow region) between ELMs

Peak divertor heat flux scaled linearly with X-point height

Divertor radiated power increased with lowering X-point

Divertor approached detachment at lower X-point heights

Low (6-7 cm)

Medium (9-12 cm)

High (20-22 cm)

- Heat flux profiles (a)
 - Peak q reduced by x 8
 - Width changed substantially
 - Peak moved away from separatrix
- D- α profiles (b)
 - Higher peak and broader profile at lower X-point due to recombination
- Balmer *n*=10-2 line intensity increased in vicinity of outer strike point at lower X-point height (c) – recombination and higher n_e
- Emission from C II and C III increased at outer strike point at lower X-point height (d, e)

Divertor camera showed plasma interaction regions with divertor plate

- Phantom camera averaged over 100 ms
- Filtered for 658 nm C II line emission

Lawrence Livermore National Laboratory

Divertor deuterium compression increased at lower X-point height

- Compression P_{div}/P_{mid} increase due to P_{div} increase
- Pressure increase due to colder, denser divertor plasma and volume recombination
 - Divertor in low X-point configuration more opaque to neutrals (?)
 - Ion gyroradius ~ 5-6 mm, comp. to plasma-divertor gap of 30-50 mm.

Flux expansion appears to be dominant factor in reducing q_{\parallel}

Relation between q_{\parallel} and q_{peak}

- *q*_{pk} changed by x 7-8 in X-point scan
- Flux expansion changed by x 4.5
- X-point connection length changed by x 3
- Private flux region heat diffusion proportional to L_X
- Heat conduction losses proportional to $L^{-4/9}_X$
- Dissipative losses e.g. Post radiated power model

