

Supported by

Coupling of Coaxial Helicity Injection plasma start-up to inductive ramp-up on the National Spherical Torus Experiment

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U Wisconsin**

D. Mueller, R. Raman, M. G. Bell, T.R. Jarboe, B.P. LeBlanc, B.A. Nelson, A.L. Roquemore, S.A. Sabbagh, and V.A. Soukhanovskii

DE-AC02-09-CH11466, DE-FG03-96ER54361, and DE-AC52-07NA27344.

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep U Quebec

Office of

Science

Non-inductive start-up and ramp-up is a high priority for the future of the ST

The NSTX non-solenoid plans are to progressively reduce the use of the central solenoid to investigate fully non-inductive discharges

2

Transient CHI: Axisymmetric reconnection leads to formation of closed flux surfaces

- Initial plasma on helical field lines in the injector region expands upward due to the $J_{pol} \times B_{tor}$ to fill the vessel
- Removing the injector voltage brings the injector current quickly to zero

Add inductive drive to CHI formed plasma

• The goal is to use CHI to establish a discharge that can be ramped up by other means

Low-Z impurities can limit the ability to ramp-up a CHI-initiated discharge with the central solenoid

- As the discharges grow upwards to fill the vessel absorber arcs occur.
- Applied $V_{loop} \sim 3.5 \text{ V/turn}$
- Low-Z impurities increase with increasing injector current and capacitor energy

Use of the Absorber Coils can limit vertical growth of the plasma and prevent unwanted arcs in the absorber

Absorber coils

- Providing a buffer flux prevents the plasma from growing into the absorber gap and eliminates arcs
- When arcs occur, low-Z impurities, primarily carbon and oxygen, are introduced into the discharge

Radial field from absorber coils prevent plasma from reaching absorber gap and reduces impurity influx

Red with Absorber Coils Black without With Absorber Coils Without

- Only the discharge without an absorber arc couples to inductive ramp-up
- Absorber arcs raise low-Z impurities, limit the ability to couple to ramp-up
- Use of the absorber coils reduces arcs, reduces impurity influx and improves coupling to inductive ramp-up

Discharge cleaning and lithium evaporation reduce low Z impurities and improve the coupling to inductive ramp-up

- Blue before conditioning
- Red after conditioning and with lithium evaporation

Conditioning Discharge CHI rectifier supply – long pulse High poloidal flux – limits expansion

Conditioning of the lower divertor is also important

Final plasma current increases with CHI energy until absorber arc occurs

All discharges had identical solenoid (OH) current programming

- With CHI, $I_{\rm p}\,$ ~ 200 kA greater than ohmic only
- Successful coupling to induction using 20 mF (goal is arc-free with 50 mF)
 - Ignoring impurity effects, expect current to scale with capacitor energy

Comparison of well-controlled shots demonstrates higher I_p and greater internal poloidal flux with CHI initiation

- Compare discharges with identical solenoid current programming
 - Discharge in red with CHI (10 mF, 1.65 kV)
 - Discharge in blue is purely inductive
 - Both had low levels of O_{II} emission
 - Density of CHI initiated discharge
 ~ 25% greater
- Final I_p is 110 kA greater in the CHI initiated discharge
- Internal inductance, plasma shape and radius from EFIT analysis are essentially identical
- Internal flux = 1/2 μ₀l_pl_iR_p

NSTX is developing non-inductive start-up and ramp-up techniques for STs

- Transient CHI a proven method to generate current on closed flux
 - Start-up & inductive coupling of 200 kA non-inductive current demonstrated on NSTX Goal: 500 kA start-up current
 - Used absorber coils to reduce/eliminate absorber arcs
 - Used Li to reduce impurities during CHI
 - CHI initiated reached 700 kA in NBI heated H-mode plasmas
 - Will test CHI performance implications of metal electrodes (LLD plates); Can reducing the source of low Z impurities improve the start-up and coupling?
- HHFW Heating and Current Drive for Ramp-up
 - NSTX is investigating low current, low temperature targets for HHFW Goal: replace inductive drive
- NBI Current Drive and Bootstrap Current routinely sustain about 65% of the plasma current non-inductively
 - NSTX upgrade will increase that fraction Goal: replace inductive drive

CHI Scaling

• From helicity and energy conservation, for a Taylor minimum energy state $\lambda_{inj} \ge \lambda_{tok}$

 $-\lambda_{inj} = \mu_0 I_{inj} / \psi_{inj}; \psi_{inj} = poloidal injector flux$

 $-\lambda_{tok} = \mu_0 I_p / \psi_{tok}$: ψ_{tok} = toroidal flux in vessel

- $I_p \leq I_{inj}(\psi_{tok} / \psi_{inj})$
- \bullet For similar B_{T} NSTX has 10 times ψ_{tok} of HIT-II
- Bubble burst condition:

 $I_{ini} = 2 \psi_{ini}^2 / (\mu_0^2 d^2 I_{TF})$ d= flux footprint width

-For HIT-II, ψ_{inj} = 8mWb, d = 8 cm, for NSTX, ψ_{inj} = 10mWb, d = 16 cm

 $-I_{ini} \ge 15$ kA for HIT-II, $I_{ini} \ge 2$ kA for NSTX

•Sufficient energy to produce CHI discharge $W_{cap} > W_{plasma}$; $\frac{1}{2} CV^2 > \frac{1}{2} L_p I_p^2$

 $\bullet L_{\rm p}$ plasma inductance $\sim 0.5~\mu H,$ and C= 50 mF limits $I_{\rm p}~$ to $\sim 500~kA$ for present NSTX system

•NSTX has achieved $I_p > 60 I_{inj}$; HIT-II has achieved $I_{inj} \sim 50 \text{ kA}$

 \Rightarrow I_p over 2.5 MA is possible for CTF if I_{inj} ~ 50 kA

CHI started discharge couples to induction and transitions to an Hmode

demonstrates compatibility with high-performance plasma operation

- Projected plasma current for CTF > 2.5 MA $[I_p = I_{inj}(\psi_{Tor}/\psi_{Pol})]^*$
 - Based on 50 kA injected current (Injector current densities achieved on HIT-II)
 - Current multiplication of 50 (achieved in NSTX)
 - In HIT-II nearly all CHI produced closed flux current is retained in the subsequent inductive ramp

CHERS: R. Bell, Thomson: B. LeBlanc

*T.R. Jarboe, Fusion Technology, 15 (1989) 7

