

Supported by

ELM suppression through modification of edge profiles with lithium wall coatings in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U ORNL PPPL** PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

J.M. Canik, J. Manickam, T.H. Osborne, R.E. Bell, S. Kubota, B.P. LeBlanc, P.B. Snyder, J.B. Wilgen,

and the NSTX Research Team

37th EPS Meeting Dublin, Ireland 21-25 June 2010

🔶 GENERAL ATOMICS

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA. Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

Office of

Science

Lithium wall coatings used in NSTX to control recycling and edge density

- End points of a well-controlled lithium coating sequence
 - Edge density and temperature profile modifications with lithium, and inferred changes in cross-field transport
- Edge pressure profile modifications and stability calculations

Edge localized modes (ELMs) observed in many non-lithium NSTX H-mode discharges

ELM-free H-mode induced by lithium wall coatings

Profiles in discharges with lithium wall coatings require recycling coefficient <u>and</u> transport change

Edge stability analysis procedure

- EFIT run at Thomson profile times for ψ_N mapping
- Profile fitting of multiple time slices with standard procedures used as target for kinetic EFITs
 - Pre-lithium discharge profiles from last 20% of ELM cycle selected
 - Post-lithium discharge profiles used in 100-200 msec windows
- Free boundary kinetic EFITs run to match kinetic pressure profiles
 - Edge bootstrap current computed from Sauter neoclassical model
 - No direct measurement biggest uncertainty
 - Stability evaluated with PEST code

NSTX

CAK RIDGE

- Fixed boundary kinetic EFITs run with variations of edge pressure gradient and edge current
 - Stability boundary evaluated with ELITE code

Peak edge pressure gradient and bootstrap current moved to region of reduced magnetic shear

Pre-lithium edge profiles close to kink/peeling instability threshold (ELITE)

Low n=1-5 pre-cursor oscillations observed before ELM crash

R. Maingi, PRL 2009

Density profile modification to lithium pumping the key in changing edge stability

Lithium wall coatings modify edge transport and stability in NSTX

- ELM-free phases increase gradually with lithium deposition, with discharges eventually becoming ELM-free
 - n_e profile shifts inward gradually with increasing lithium
 - $-T_e$, T_i increase and profiles change substantially
- H-factor increased up to 50% for thickest lithium coatings
 - Region of low D, χ_{eff} extends inward from H-mode barrier
 - Global stability limits ($\beta_N \sim 5.5$ -6) encountered before edge (ELM) stability limits
- Peak pressure gradients shifted inward -> ELMs suppressed
 - Density profile modification crucial step toward ELM suppression
- Impurities accumulate and radiated power increases monotonically in the discharge
 - Present remedy: use 3d fields to trigger ELMs to purge impurities while looking to reduce impurity influx, e.g. via 'snowflake' divertor

3D external fields used to trigger ELMs, prevent radiation buildup while keeping high energy confinement from lithium

THANK YOU FOR YOUR ATTENTION!

- Mueller O3.110 Coupling of Coaxial Helicity Injection plasma start-up to inductive ramp-up on the NSTX
- Gerhardt O5.126 Development of High-Elongation, Highbeta Discharges for Steady State ST Application
- Ahn P2.113 Effect of 3d fields on divertor profiles in NSTX
- Canik P2.123 Impurity control with 3D fields in NSTX
- Gray P2.132 Heat flux width scaling in NSTX
- Menard P2.106 NSTX-U physics design
- Sontag P2.160 Small-ELM Regimes in NSTX
- Soukhanovskii P2.161 Snowflake divertor experiments
- Sabbagh P4.160 RWM stability at high beta in NSTX

Density profile shifted inward near the magnetic separatrix

NSTX Facility Capabilities

Confinement improves with lithium coatings, due to broadening of the temperature profiles

TRANSP analysis confirms electron thermal transport in outer region progressively reduced by lithium

NSTX Developing Lithium-Coated Plasma Facing Components (PFCs)

- 2005: Lithium pellet injection for wall coatings
- **2006**: LIThium EvaporatoR (LITER) deposited lithium on center column and lower divertor
- **2007**: Larger evaporator re-aimed to increase depositior rate on lower divertor

2008: Dual LITERs to eliminate shadowed regions

- Also used "lithium powder dropper"
- 2009: Routine use of dual LITERs

NSTX

CAK RIDGE

- 80% of discharges now have lithium applied beforehand
- Complements and builds on experience with lithium coating of limiters in tokamaks TFTR, CDX-U (liquid), T-11, FTU, HT-7
 - Now also used in stellarator TJ-II

Global β_N limit encountered before edge stability limit with lithium coatings

🕦 NSTX

Suppression of all ELMs with lithium wall coatings

- ELMs disappear gradually, with reduced ELM frequency and growing periods of quiescence
- Edge n_e profile shifts inward by several cm, while edge T_e profile increases inside of edge n_e pedestal
 - Magnitude of the $n_{\rm e}$ profile shift increases with amount of lithium coating
 - 2D plasma + neutrals code SOLPS used to interpret changes in profiles
 - Observed n_e profile shift cannot be reproduced with simple reduction of divertor recycling coefficient

ELM evolution with shot number

ELM evolution with shot number

SOLPS modeling used to model power and particle balance of baseline ELMy discharge

Post-lithium discharge profiles not reproduced with simple recycling coefficient change

Post-lithium discharge profiles better matched with transport and recycling coefficient change

NSTX

EPS 2010 meeting: ELM suppression with lithium R. Maingi O2.108

Radius at cutoff density moves close to separatrix with increasing lithium deposition

Edge stability window determined by kink/peeling and ballooning mode MHD instabilities

- Ballooning modes driven by plasma pressure gradient
- External kink/peeling modes driven by edge current
 - Modes couple at finite-n to form stability window
- Bootstrap current plays a complex role in edge stability
 - Driven by the pressure gradient
 - Largest component of the parallel current in the pedestal, j_{ped}
 - Destabilizes kink, peeling modes
 - Reduces local magnetic shear to open access to second stability regime
 P. Snyder PoP 2002, H. Wilson PoP 2002, J. Connor PoP 1998

Peeling-ballooning constraint tested in several tokamaks

Electron pressure gradient dominates total pressure gradient

Electron pressure gradient dominates total pressure gradient

Details of precise evolution toward ELM suppression not well understood

- Why are the ELMs not stabilized by diamagnetic drift, as in higher aspect ratio tokamaks?
- Complete evolution: why do ELMs go away the way they do i.e. with increasing periods of quiescence?
- What is the role of failed discharges/L-mode in observing ELMs on following discharges?

Measured edge bootstrap current in reasonable agreement with neoclassical calculation in DIII-D

