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Outline: Experimental results from snowflake 
divertor in NSTX very encouraging 

  Snowflake divertor geometry 
attractive for heat flux management  

  Snowflake divertor in NSTX 
•  Magnetic properties realized in steady-

state  
•  Core H-mode confinement unchanged 
•  Core impurities reduced 
•  Divertor heat flux significantly reduced 
•  Consistent w/ 2D edge transport model  

  Conclusions 
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Snowflake divertor geometry attractive for heat 
flux mitigation  

  Snowflake divertor 
•  Second-order null 

-  Bp ~ 0 and grad Bp ~ 0 (Cf. first-order null: Bp ~ 0) 
•  Obtained with existing divertor coils (min. 2) 
•  Exact snowflake topologically unstable 

  Predicted geometry properties (cf. standard divertor) 
•  Larger region with low Bp around X-point: ped. stability  
•  Larger plasma wetted-area Awet  : reduce qdiv 

•  Larger X-point connection length Lx  : reduce qII 

•  Larger effective divertor volume Vdiv  : incr. Prad , PCX 

  Experiments 
•  TCV (F. Piras et. al, PRL 105, 155003 (2010)) 
•  NSTX 

   
 snowflake-minus 

snowflake-plus 

Exact 
snowflake 
divertor 

D. D. Ryutov, PoP 14, 064502 2007 
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Plasma-wetted area and connection length are 
increased by 50-90 % in snowflake divertor 

  These 
properties 
observed in first 
30-50 % of SOL 
width 

  Btot angles in the 
strike point 
region: 1-2o, 
sometimes < 1o
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Good H-mode confinement properties and core 
impurity reduction obtained with snowflake divertor 

  0.8 MA, 4 MW H-mode  
  κ=2.1, δ=0.8 
  Core Te ~ 0.8-1 keV, Ti ~ 1 keV 
  βN ~ 4-5 
  Plasma stored energy ~ 250 kJ 
  H98(y,2) ~ 1 (from TRANSP) 
  Core carbon reduction due to 

•  Type I ELMs 
•  Edge source reduction 

•  Divertor sputtering rates reduced 
due to partial detachment 
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Significant reduction of steady-state divertor heat 
flux observed in snowflake divertor (at PSOL~ 3 MW) 

  Partial detachment at or after snowflake formation time 
  Heat and ion fluxes in the outer strike point region decreased  
  Divertor recombination rate and radiated power are increased 
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Snowflake divertor heat flux consistent with 
NSTX divertor heat flux scalings 

  Snowflake divertor (*): PSOL~3-4 MW, fexp~40-60, qpeak~0.5-1.5 MW/m2 

T. K. Gray et. al, EX/D P3-13, IAEA FEC 2010 
V. A. Soukhanovskii et. al, PoP 16, 022501 (2009) 

0.8 MA 

flux expansion 

*
*
50
*




V. A. SOUKHANOVSKII, TALK O3.109, 38th EPS Conf. Plasma Phys., Strasbourg, France, 06/29/11  9 of 10 

Modeling shows a trend toward reduced temperature, 
heat and particle fluxes in the snowflake divertor 

  2D multi-fluid code UEDGE   
•  Fluid (Braginskii) model for 

ions and electrons 
•  Fluid for neutrals 
•  Classical parallel transport, 

anomalous radial transport 
-  D = 0.25 m2/s 
-  χe,i = 0.5 m2/s 

Core interface: 
•  Te,i = 120 eV 
•  ne = 4.5 x 1019 

Rrecy = 0.95  
Carbon 3 % 
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  Steady-state snowflake (up to 600 ms, many τE’s) 
  Good H-mode confinement (τE, Te,i(0), βN, H98(y,2) ) 
  Reduced core carbon concentration 
  Significant reduction in divertor heat flux 
  Potential to combine with radiative divertor for increased divertor 

radiation 

 
 
  This talk focused on divertor results. Planned research on NSTX: 

  Improved magnetic control  
  Pedestal peeling-balooning stability  
  Snowflake at low SOL collisionality with lithium 
  Divertor and upstream turbulence (blobs) 

 

NSTX studies suggest the snowflake divertor configuration may 
be a viable divertor solution for present and future tokamaks 

The snowflake divertor: a game-changer for magnetic 
fusion devices ?  ✗ 
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NSTX presentations at 38th EPS Conference 
D. Kumar: Modeling of space resolved impurity emission in the EUV range using a transmission 
grating based imaging spectrometer at NSTX  
D. Stutman: Multi-energy SXR imaging diagnostics for fusion experiments  
D.J. Clayton: Edge transport measurements with the new multi-energy soft-x-ray diagnostic on NSTX  
J.C. Hosea: Properties of HHFW electron heating generated H-modes in NSTX  
R.J. La Haye: Aspect ratio effects on neoclassical tearing modes from comparison between DIII-D and 
NSTX  
J.W. Berkery: Resistive wall mode kinetic stability advancements for refined comparison with 
experiments  
S.A. Sabbagh: Advances in resistive wall mode stabilization to maintain high beta, low internal 
inductance plasmas in NSTX  
G. Taylor: High-harmonic fast wave heating and current drive results for deuterium H-mode plasmas 
in the National Spherical Torus Experiment  
W. Guttenfelder: Nonlinear gyrokinetic simulations of microtearing mode turbulence  
E. Fredrickson: Internal amplitude measurements of CAE and GAE 
Ya.I. Kolesnichenko: Formation of a non-monotonic energy distribution of energetic ions in NSTX  
J.W. Ahn: Effect of 3-D fields on divertor detachment and associated pedestal profiles in NSTX H-
mode plasmas  
R. Maingi: Density Profile and Particle Transport Control as the Critical Ingredients for ELM 
Suppression in Tokamaks  
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Backup slides 
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  Divertor challenge 
•  Steady-state heat flux  
-  present limit qpeak ≤ 10 MW/m2 
-  projected to qpeak ≤ 80 MW/m2 for future devices 

•  Density and impurity control 
•  Impulsive heat and particle loads 
•  Compatibility with good core plasma performance 

  Spherical tokamak: additional challenge - 
compact divertor 

  NSTX (Aspect ratio A=1.4-1.5) 
•  Ip ≤ 1.4 MA, Pin ≤ 7.4 MW (NBI), P / R ~ 10 
•  qpeak ≤ 15 MW/m2, q|| ≤ 200 MW/m2 

•  Graphite PFCs with lithium coatings 

Poloidal divertor concept enabled progress in 
magnetic confinement fusion in the last 30 years 

National Spherical 
Torus Experiment 
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Various techniques developed for reduction of heat 
fluxes q|| (divertor SOL) and qpeak (divertor target) 

  Promising divertor peak heat flux mitigation solutions: 
•  Divertor geometry  

  poloidal flux expansion 

  divertor plate tilt 
  magnetic balance 

•  Radiative divertor 

  Recent ideas to improve standard divertor geometry 
•  X-divertor (M. Kotschenreuther et. al, IC/P6-43, IAEA FEC 2004) 
•  Snowflake divertor (D. D. Ryutov, PoP 14, 064502 2007) 
•  Super-X divertor (M. Kotschenreuther et. al, IC/P4-7, IAEA FEC 2008) 

fexp =
(Bp/Btot)MP

(Bp/Btot)OSP

Awet = 2πR fexp λq‖qpeak !
PSOL(1− frad)fgeo sinα

2πRSP fexpλq‖
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Divertor heat flux mitigation is key for present 
and future fusion plasma devices  

  ST / NSTX goals: 
•  Study high beta plasmas at reduced collisionality 
•  Access full non-inductive start-up, ramp-up, 

sustainment 
•  Prototype solutions for mitigating high heat & 

particle flux 

  In an ST, modest q|| can yield high divertor qpk  
•  in NSTX, q||= 50-100 MW/m2 and qpk=6-15 MW/

m2 
•  Large radiated power and momentum losses are 

needed to reduce q|| 

  In NSTX, partially detached divertor regime is 
accessible only  
•  in highly-shaped plasma configuration with 

high flux expansion divertor (high plasma 
plugging efficiency, reduced q||) 

•  modest divertor D2 injection still needed 
 
 

ST-based Plasma 
Material Interface (PMI) 

Science Facility 


ST-based Fusion 
Nuclear Science 

(FNS) Facility


NSTX
 NSTX-U
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Open divertor geometry, three existing divertor coils and a good 
set of diagnostics enable divertor geometry studies in NSTX 

  Ip = 0.7-1.4 MA 
  Pin ≤ 7.4 MW (NBI) 
  ATJ and CFC graphite PFCs 
  Lithium coatings from lithium 
evaporators 
  Three lower divertor coils with 
currents 1-5, 1-25 kA-turns 
  Divertor gas injectors (D2, CD4) 
  Extensive diagnostic set 
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Possible snowflake divertor configurations were 
modeled with ISOLVER code 
  ISOLVER - predictive free-

boundary axisymmetric Grad-
Shafranov equilibrium solver 
•  Input: normalized profiles (P, Ip), 

boundary shape 
•  Match a specified Ip and β

•  Output: magnetic coil currents 

  Standard divertor discharge below: 
 Bt=0.4 T, Ip=0.8 MA, δbot~0.6, κ∼2.1 

Quantity Standard 
divertor 

Simulated 
snowflake 

X-point to target parallel length Lx (m) 5-10 10 
Poloidal magnetic flux expansion fexp at outer SP 10-24 60 
Magnetic field angle at outer SP (deg.) 1.5-3 ~1 
Plasma-wetted area Awet (m2) ≤ 0.4 0.95 
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Heat flux mitigation is more challenging in 
compact divertor of spherical torus 

  NSTX 
•  Ip = 0.7-1.4 MA, tpulse < 1.5 s, Pin ≤ 7.4 MW (NBI) 
•  ATJ and CFC graphite PFCs 
•  P / R ~ 10 
•  qpk ≤ 15 MW/m2 

•  q|| ≤ 200 MW/m2 

Quantity NSTX DIII-D 
Aspect ratio 1.4-1.5 2.7 
In-out plasma boundary area ratio 1:3 2:3 
X-point to target parallel length Lx (m) 5-10 10-20 
Poloidal magnetic flux expansion fexp at outer SP 5-30 3-15 
Magnetic field angle at outer SP (deg.) 1-10 1-2 
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Snowflake divertor configurations obtained in 
NSTX confirm analytic theory and modeling 

Standard Snowflake 

Bp 

fexp 
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Divertor profiles show low heat flux, broadened C III and  
C IV radiation zones in the snowflake divertor phase 

  Heat flux profiles reduced to 
nearly flat low levels, 
characteristic of radiative heating 

  Divertor C III and C IV brightness 
profiles broaden 

  High-n Balmer line spectroscopy 
and CRETIN code modeling 
confirm outer SP detachment with 
Te ≤ 1.5 eV, ne ≤ 5 x 1020 m-3 

•  Also suggests a reduction of 
carbon physical and chemical 
sputtering rates 

     0
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Snowflake divertor with CD4 seeding leads to 
increased divertor carbon radiation  

  Ip=0.9 MA, PNBI=4 MW, PSOL=3 MW 

  Snowflake divertor (from 0.6 ms) 
•  Peak divertor heat flux reduced from 

4-6 MW/m2 to 1 MW/m2 

  Snowflake divertor (from 0.6 ms)  
 + CD4 
•  Peak divertor heat flux reduced from 

4-6 MW/m2 to 1-2 MW/m2 
•  Divertor radiation increased further 
•  Divertor heat flux not as low due to 

additional radiative heating 
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Preliminary indications that ELM heat flux is 
effectively dissipated in snowflake divertor 

  Type I ELMs is a concern for divertor 
lifetime 
•  Erosion 
•  Evaporation, melting 

  Radiative buffering of ELMs ineffective 
  In NSTX snowflake divertor 

•  Type I ELMs 5-12 % ΔW/W 
•  Significant dissipation of ELM energy in 

strike point region 
•  Reduction in low flux expansion region (at 

larger Rdiv) 
•  Need more data to analyze mechanisms 

and trends 
-  Energy diffusion over longer conn. Length 
-  Field line mixing in null-point region  
-  Radiative / collisional dissipation 
-  Plasma-wetted area effect 
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Upper divertor is unaffected by lower divertor 
snowflake configuration 
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High-n Balmer line emission measurements suggest 
high divertor recombination rate, low Te and high ne 

  Te=0.8-1.2 eV, ne=2-7 x 1020 m-3 inferred from modeling 

  Balmer series 
spectra modeled with 
CRETIN; Spectra 
sensitive to 
  Line intensity <-> 

Recombination rate 
  Te <-> Boltzman 

population 
distribution 

  ne <-> Line 
broadening due to 
linear Stark effect 
from ion and electron 
microfield 
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2D multi-fluid edge transport code UEDGE is 
used to study snowflake divertor properties 

  Fluid (Braginskii) 
model for ions and 
electrons 

  Fluid for neutrals 
  Classical parallel 

transport, 
anomalous radial 
transport  

  Core interface: 
•  Te = 120 eV 
•  Ti = 120 eV 
•  ne = 4.5 x 1019 

  D = 0.25 m2/s 
  χe,i = 0.5 m2/s 
  Rrecy = 0.95  
  Carbon 3 % 

Standard                      Snowflake 
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Radiated power is broadly distributed in 
the outer leg of snowflake divertor 

UEDGE model 
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1D estimates indicate power and momentum 
losses are increased in snowflake divertor 

  1D divertor detachment model 
by Post 
•  Electron conduction with non-

coronal carbon radiation 
•  Max q|| that can be radiated as 

function of connection length for 
range of  fz  and ne 

  Three-body electron-ion 
recombination rate depends on 
divertor ion residence time 
•  Ion recombination time: τion~ 

1−10 ms at Te =1.3 eV 
•  Ion residence time: τion ≤ 3-6 ms 

in standard divertor, x 2 in 
snowflake 


