

Supported by

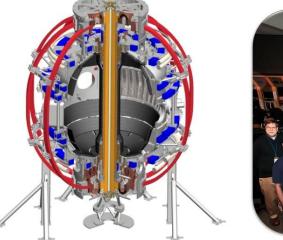
The role of rotation and kinetic damping in high-β ST plasma stability*

Coll of Wm & Mary Columbia U **CompX General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL **PPPL Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

Jon Menard (PPPL) Yueqiang Liu (CCFE)

> **EPS/ICPP** Stockholm, Sweden 2-6 July 2012

*This work supported by US DoE contract DE-AC02-09CH11466



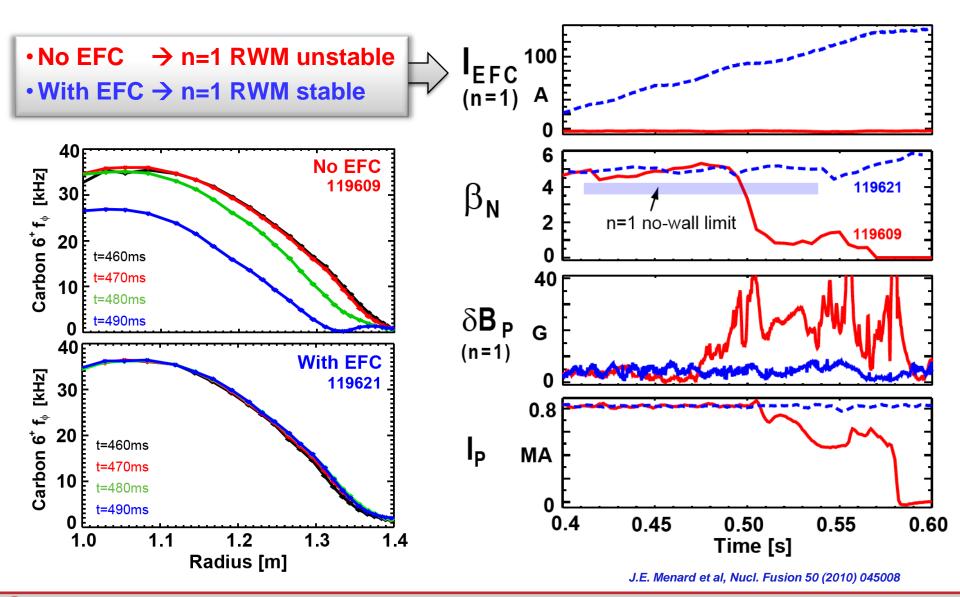
Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Overview

- Drift-kinetic effects have previously been included in RWM stability analysis for NSTX (see papers by Berkery, Sabbagh, Menard)
 - In this work, we briefly review result that RWM stability is sensitive function of edge rotation, and is consistent with MARS-F analysis
 - We then investigate how RWM eigenfunctions are modified by rotation and dissipation using MARS-K
 - Not previously documented for ST plasmas
 - > Could impact 'perturbative' approach employed by codes such as MISK
- Drift-kinetic stability analyses have <u>not</u> previously been carried out for ideal-wall limit, aka the 'plasma mode'
 - Work here investigates impact of rotation, rotation shear, and kinetic damping on 'plasma mode' stability and eigenfunctions

Error field correction (EFC) often necessary to maintain rotation, stabilize n=1 resistive wall mode (RWM) at high β_N



() NSTX

Analysis of experiment uses MARS: linear MHD stability code that includes toroidal rotation and drift-kinetic effects

• Single-fluid linear MHD

$$(\gamma + in\Omega)\boldsymbol{\xi} = \mathbf{v} + (\boldsymbol{\xi} \cdot \nabla\Omega)R^2 \nabla \phi$$

$$\rho(\gamma + in\Omega)\mathbf{v} = -\nabla \cdot \mathbf{p} + \mathbf{j} \times \mathbf{B} + \mathbf{J} \times \mathbf{Q}$$

$$-\rho[2\Omega \hat{\mathbf{Z}} \times \mathbf{v} + (\mathbf{v} \cdot \nabla\Omega)R^2 \nabla \phi]$$

$$(\gamma + in\Omega)\mathbf{Q} = \nabla \times (\mathbf{v} \times \mathbf{B}) + (\mathbf{Q} \cdot \nabla\Omega)R^2 \nabla \phi$$

$$(\gamma + in\Omega)p = -\mathbf{v} \cdot \nabla P, \qquad \mathbf{j} = \nabla \times \mathbf{Q}$$

• Mode-particle resonance operator:

$$\Rightarrow \qquad \mathbf{p} = p\mathbf{I} + p_{\parallel}\hat{\mathbf{b}}\hat{\mathbf{b}} + p_{\perp}(\mathbf{I} - \hat{\mathbf{b}}\hat{\mathbf{b}})$$

$$p_{\parallel}e^{-i\omega t + in\phi} = \sum_{e,i} \int d\Gamma M v_{\parallel}^{2} f_{L}^{1}$$

$$p_{\perp}e^{-i\omega t + in\phi} = \sum_{e,i} \int d\Gamma \frac{1}{2} M v_{\perp}^{2} f_{L}^{1}$$

$$f_{L}^{1} = -f_{\epsilon}^{0} \epsilon_{k} e^{-i\omega t + in\phi} \sum_{r} X_{m}^{u} H_{ml}^{u} \lambda_{ml} e^{-in\tilde{\phi}(t) + im\langle \dot{\chi} \rangle t + il\omega_{b}t}$$

$$H_{L} = \frac{1}{\epsilon_{k}} [M v_{\parallel}^{2} \vec{\kappa} \cdot \boldsymbol{\xi}_{\perp} + \mu(Q_{L\parallel} + \nabla B \cdot \boldsymbol{\xi}_{\perp})]$$

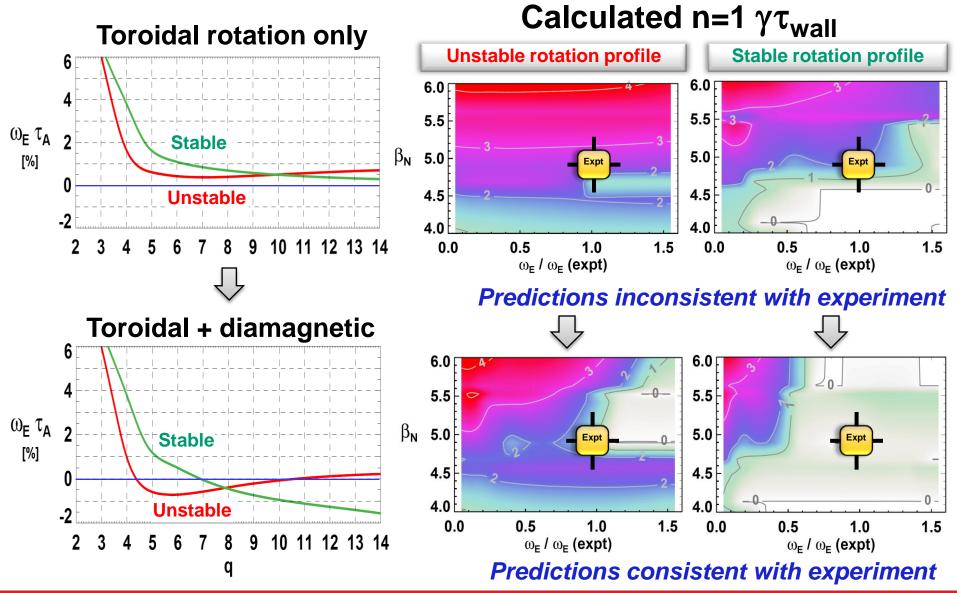
MARS-K:
$$\lambda_{ml} = \frac{n[\omega_{*N} + (\hat{\epsilon}_k - 3/2)\omega_{*T} + \omega_E] - \omega}{n(\langle \omega_d \rangle + \omega_E) + [\alpha(m + nq) + l]\omega_b - i\nu_{eff} - \omega}$$
$$MARS-F: \quad \lambda_{ml} = \frac{n[\omega_{*N} + (\hat{\epsilon}_k - 3/2)\omega_{*T} + \omega_E] - \omega}{n(\langle \omega_d \rangle + \omega_E) + [\alpha(m + nq) + l[\omega_b + i\nu_{eff} - \omega]}$$

+ additional approximations/simplifications in f_L^{1}

• Fast ions: MARS-K: slowing-down f(v), MARS-F: lumped with thermal

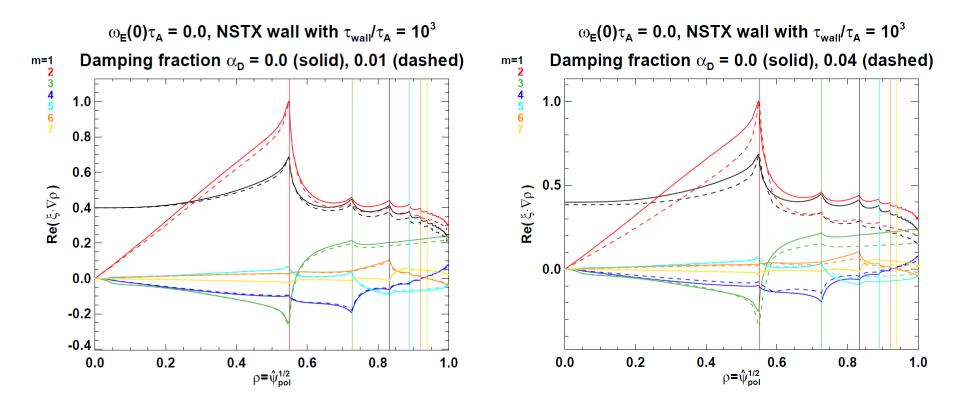
Y.Q. Liu, et al., Phys. Plasmas 15, 112503 2008

MARS-F: Inclusion of ω_{*C} in ω_{E} increases separation between stable and unstable $\omega_{E}(\psi)$, provides consistency w/ expt.



MARS-K studies of RWM eigenfunction: Dissipation alone can modify RWM eigenfunctions (1)

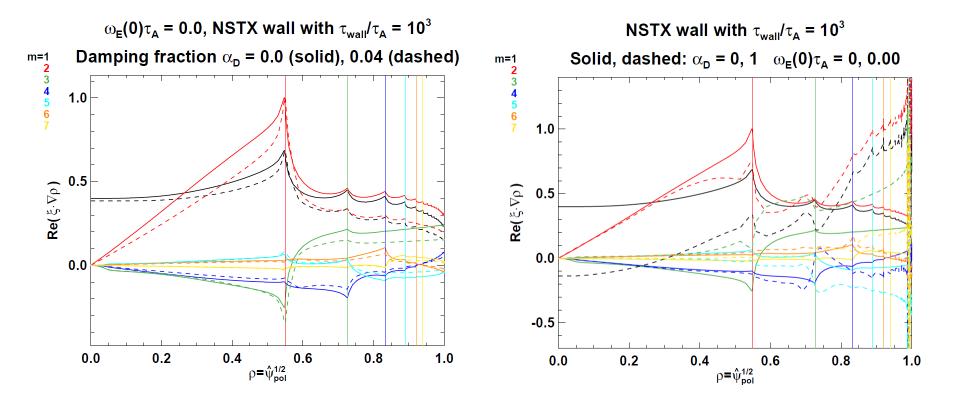
 4% of full kinetic damping can reduce eigenfunction amplitude by 25-50% at large minor radii



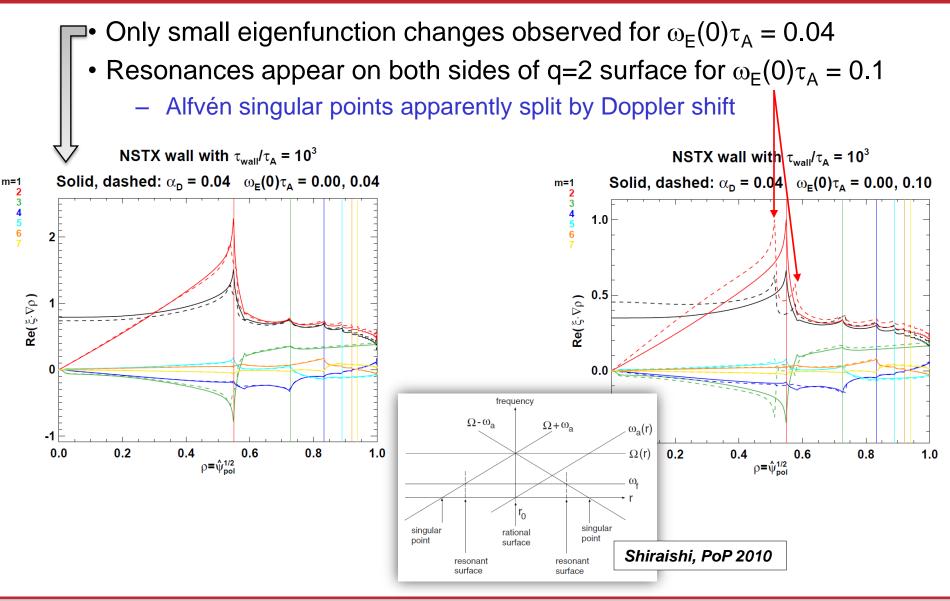
NOTE: collisions are included in this and subsequent calculations with energy independent collisionality with slowing-down v evaluated at E = 5/2 T

MARS-K studies of RWM eigenfunction: Dissipation alone can modify RWM eigenfunctions (2)

 Full kinetic damping can produce large changes in eigenmode structure near mode rational surfaces, and in edge region

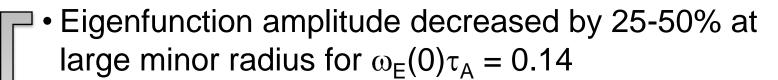


Rotation (with weak dissipation) can also modify RWM eigenfunctions

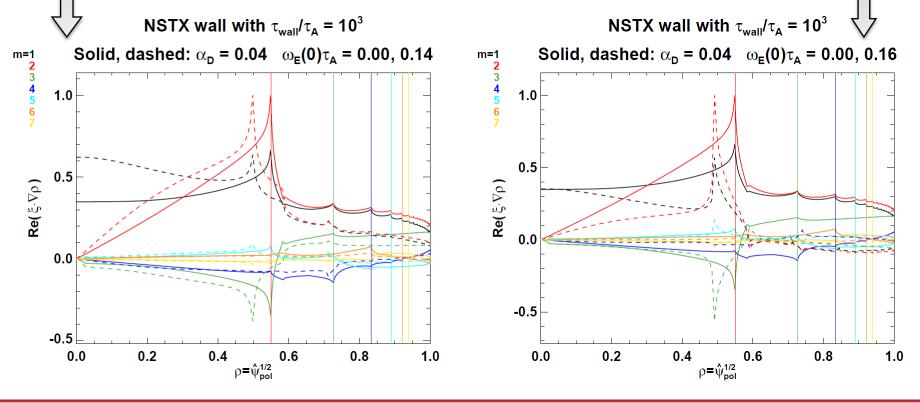


WNSTX

As rotation (with weak dissipation) increases toward experimental value, RWM eigenfunction is strongly modified

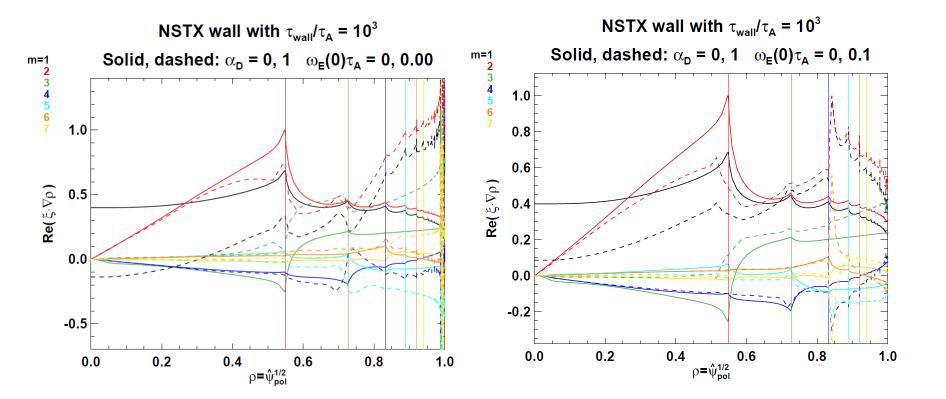


• Eigenfunction strongly modified for $\omega_{\rm E}(0)\tau_{\rm A} = 0.16$ —Rotation approaching marginal stability ($\omega_{\rm E}(0)\tau_{\rm A} \approx 0.22$)



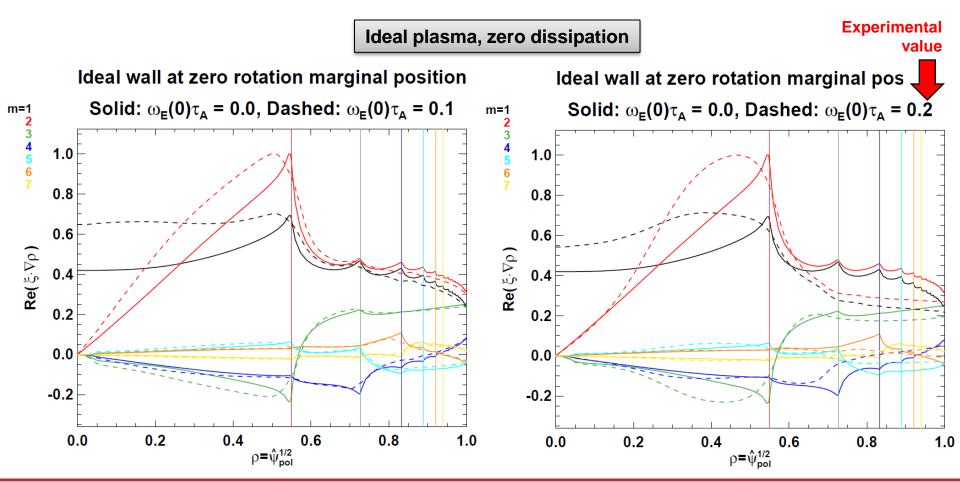
Rotation + dissipation strongly modifies RWM eigenfunctions

 Rotation added to full kinetic damping produces changes that deviate significantly from cases w/o rotation or dissipation



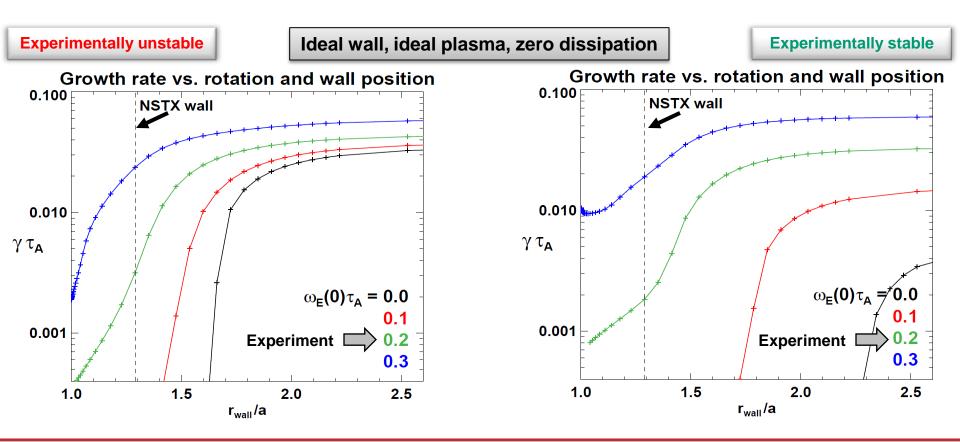
Toroidal rotation also modifies with-wall eigenfunction

- With wall present, eigenfunction modified in both core and edge
- Note this is 'plasma mode' with $\omega_r \sim$ rotation frequency

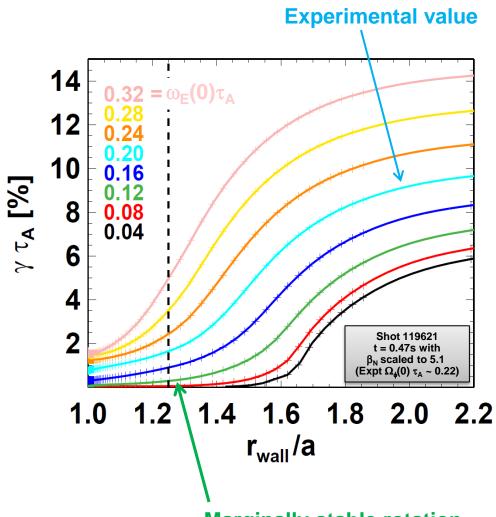


Increased toroidal rotation reduces 'plasma mode' stability

- Implication: 'ideal-wall limit' is function of rotation speed
- Plasma mode predicted to be unstable for NSTX wall and rotation, but experiment does not exhibit this fast rotating instability at this time



Higher-resolution rotation scan finds ideal 'plasma mode' marginally stability at ~50-60% of experimental rotation

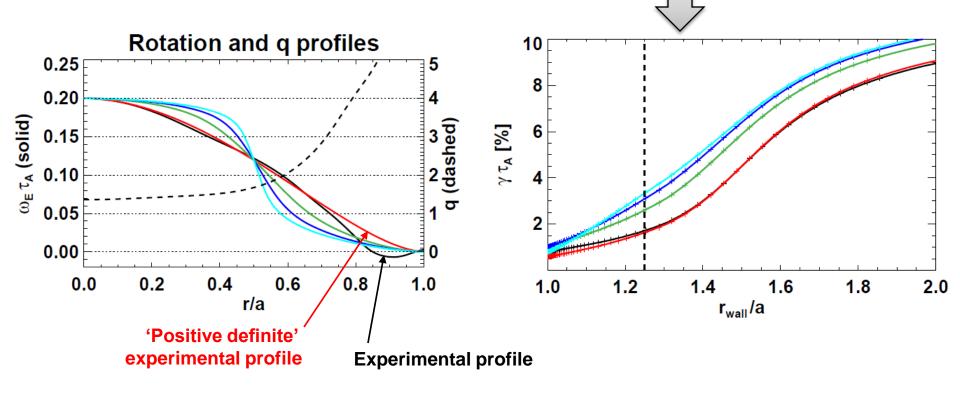


- Ideal NSTX plasma: $\beta_N = 5.1$, wall position r_{wall} / a ~ 1.25
 - Low rotation \rightarrow marginal r_{wall} / a ~ 1.65
 - As $ω_E(0)τ_A$ → 0.1-0.12 (no dissipation), n=1 becomes unstable
 - For $\omega_E(0) \tau_A \sim 0.2$ -0.3, n=1 mode is unstable even with the wall on the plasma boundary
- Instability tentatively identified as Kelvin-Helmholtz

Marginally stable rotation

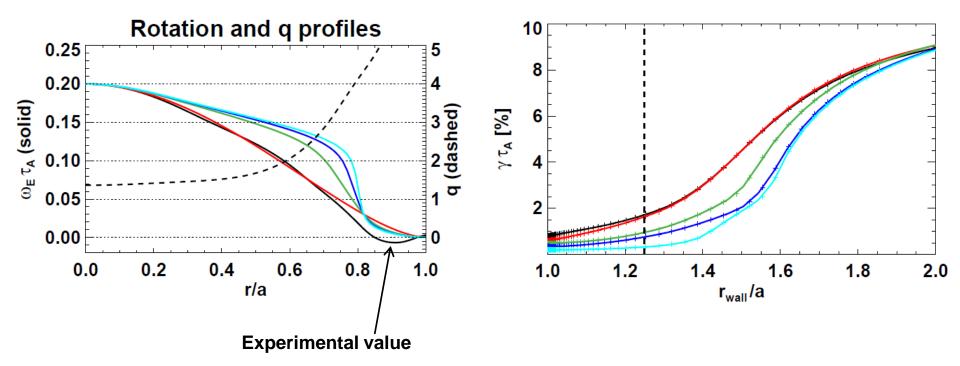
Increased rotation shear in plasma core is destabilizing (consistent with expectation for Kelvin-Helmholtz)

- Rotation variations in edge region change γ very little
 - Compare experiment and modified 'positive-definite' profiles below
- γ independent of shear for 'medium' and 'high' shear cases (indicates saturation of shear effects)



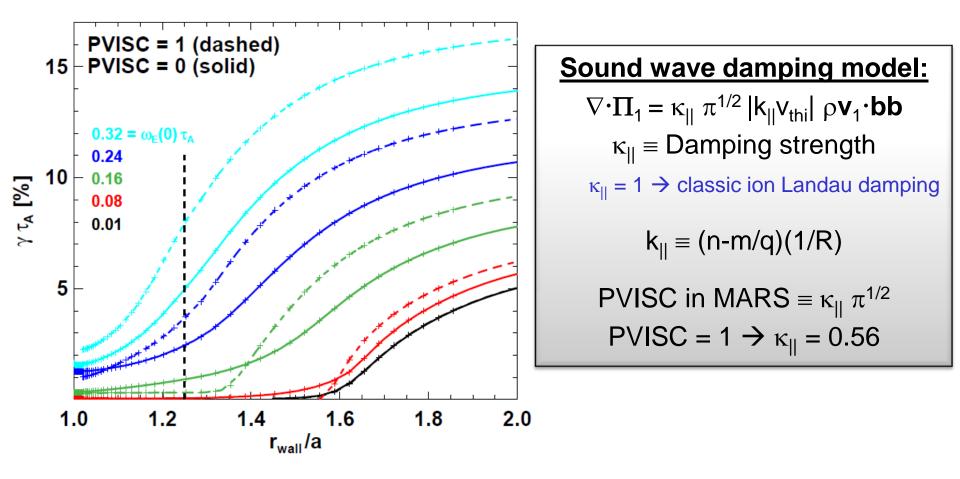
However, increased rotation shear in plasma edge region can be <u>stabilizing</u>

- For near-edge rotation shear, both the shear magnitude and the wall position influence the mode growth rate
- 'high' edge-shear case is nearly stable at experimental r_{wall} / a

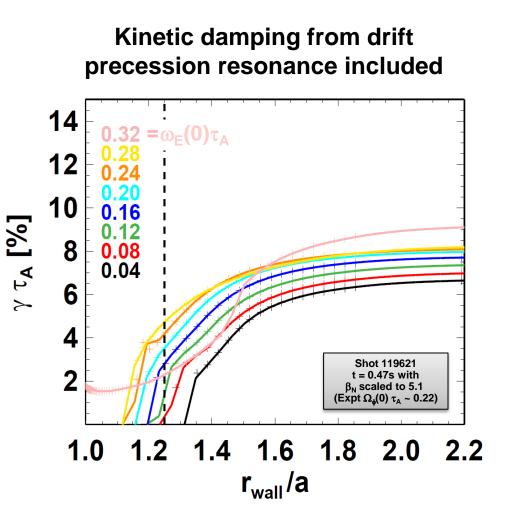


Plasma mode destabilization by rotation/rotation shear is still predicted when parallel sound-wave damping is included

- For larger r_{wall} / a, parallel damping systematically increases growth rate
- For smaller r_{wall} / a, growth rate can be reduced relative to ideal case



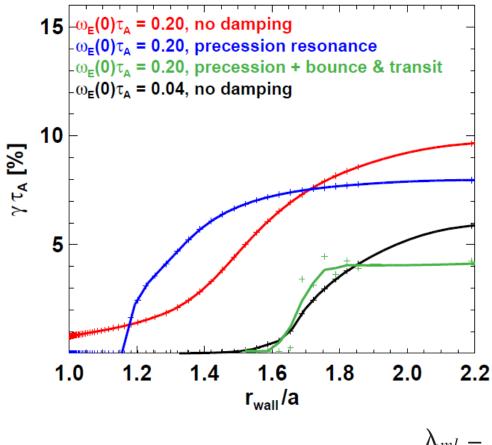
(Perpendicular) kinetic damping stabilizes 'plasma mode' over a wider range of rotation, but only at reduced r_{wall} / a



- Mode γ generally reduced for large r_{wall} / a relative to ideal plasma predictions
- Mode can remain stable for high $\omega_{\rm E}(0)\tau_{\rm A}$ at small $r_{\rm wall}$ / a
- At sufficiently high $\omega_E(0)\tau_A \sim 0.3$, plasma unstable even for r_{wall} / a = 1

Results imply both rotation and dissipation influence ideal-wall stability limit (plasma mode)

Initial calculations indicate bounce/transit resonances provide increased stability of 'plasma mode'



- Precession resonance provides stabilization for small r_{wall} / a
- Stabilization strongly enhanced by including bounce & transit resonances in damping
 - Marginal wall position similar to low-rotation ideal plasma limit
 - Coincidence?
- Future work: explore impact of beta & rotation on these trends

$$ml = \frac{n[\omega_{*N} + (\hat{\epsilon}_k - 3/2)\omega_{*T} + \omega_E] - \omega}{n(\langle \omega_d \rangle + \omega_E) + [\alpha(m + nq) + l]\omega_b - i\nu_{\text{eff}} - \omega}$$

<u>Challenge</u>: simulations computationally expensive due to large m=30-40 needed to resolve high edge-q of ST (~1 day per eigenvalue)

Summary

- Edge rotation (q \ge 4, r/a \ge 0.8) important for NSTX RWM
 - Trends consistent with stability calculations using MARS-F
- RWM eigenfunctions are modified by dissipation, rotation
 - Reduction/modification of ξ_{\perp} will modify kinetic stabilization
- Ideal-wall limit ('plasma mode') modified by rotation, dissipation
 - With no dissipation, plasma is predicted to be unstable at rotation ½ the experimental value, but no instability is observed in experiment
 - Rotation shear can be stabilizing or destabilizing, depending on where the maximum shear is located in minor radius
 - Parallel (SW) damping destabilizing/stabilizing at large/small r_{wall} / a
 - Perpendicular kinetic damping stabilizes plasma mode at high rotation
 - Bounce/transit resonances significantly increase plasma mode stability
 - <u>Future</u>: compare experiment to predicted ideal-wall limit and mode frequency including all kinetic resonances and at increased beta

