
Divertor heat flux mitigation with impurity-seeded 
standard and snowflake divertors in NSTX. 

V. A. Soukhanovskii, 
R. E. Bell , A. Diallo , S. Gerhardt, R. Kaita, S. Kaye, 
E. Kolemen, B. P. LeBlanc, R. Maingi, A. McLean, J. E. 
Menard, D. Mueller, S. F. Paul , M. Podesta, R. Raman, 
A. L. Roquemore, D. D. Ryutov, F. Scotti 

39th EPS Conference
Stockholm, Sweden

2-6 July 2012

NSTX-U Supported by    

Culham Sci Ctr 
York U 

Chubu U 
Fukui U 

Hiroshima U 
Hyogo U 
Kyoto U 

Kyushu U 
Kyushu Tokai U 

NIFS 
Niigata U 
U Tokyo 

JAEA 
Inst for Nucl Res, Kiev 

Ioffe Inst 
TRINITI 

Chonbuk Natl U 
NFRI 

KAIST 
POSTECH 

Seoul Natl U 
ASIPP 

CIEMAT 
FOM Inst DIFFER 

ENEA, Frascati 
CEA, Cadarache 

IPP, Jülich 
IPP, Garching 

ASCR, Czech Rep 

Coll of Wm & Mary 
Columbia U 
CompX 
General Atomics 
FIU 
INL 
Johns Hopkins U 
LANL 
LLNL 
Lodestar 
MIT 
Lehigh U 
Nova Photonics 
ORNL 
PPPL 
Princeton U 
Purdue U 
SNL 
Think Tank, Inc. 
UC Davis 
UC Irvine 
UCLA 
UCSD 
U Colorado 
U Illinois 
U Maryland 
U Rochester 
U Tennessee 
U Tulsa 
U Washington 
U Wisconsin 
X Science LLC 



2 of 19 V. A. SOUKHANOVSKII, 39th EPS CONFERENCE, Stockholm, Sweden, 2-6 July 2012 

Various techniques developed for reduction of heat fluxes q|| 
(divertor SOL) and qpeak (divertor target) 

  Radiative divertor (partially detached strike point) is envisioned for 
present and future devices (e.g. ITER, ST-FNSF) as the steady-state 
heat flux mitigation solution  

  Recent ideas to improve standard divertor geometry 
•  Snowflake divertor (D. D. Ryutov, PoP 14, 064502 2007) 
•  X-divertor (M. Kotschenreuther et. al, IC/P6-43, IAEA FEC 2004) 
•  Super-X divertor (M. Kotschenreuther et. al, IC/P4-7, IAEA FEC 2008) 

fexp =
(Bp/Btot)MP

(Bp/Btot)OSP

qpk !
Pheat (1− frad)fout/totfdown/tot(1− fpfr) sinα

2πRSP fexpλq||

Awet = 2πR fexp λq‖
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NSTX Upgrade will address critical plasma confinement and 
sustainment questions by exploiting 2 new capabilities 

TF OD = 40cm


TF OD = 20cm  

 Previous  
center-stack 

 2x higher CD efficiency from larger tangency radius RTAN 
 100% non-inductive CD with q(r) profile controllable by: 

• NBI tangency radius 

• Plasma density 
• Plasma position 

 
 New 2nd NBI Present NBI 

 Reduces ν*  ST-FNSF values to understand ST 
confinement 
• Expect 2x higher T by doubling BT, IP, and NBI heating power 

  Provides 5x longer pulse-length 
• q(r,t) profile equilibration 
• Tests of NBI + BS non-inductive ramp-up and sustainment 

 New 
center-stack 

New center-stack 

 New 2nd NBI 

MENARD, J. et al., Proceedings of the 24th IEEE 
Symposium on Fusion Engineering (2011);
Accepted to Nuclear Fusion (2012)
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NSTX-U scenarios with high Ip and PNBI are projected to 
challenge passive cooling limits of graphite divertor PFCs 

 High IP scenarios projected to 
have narrow λq

mid  ~3mm 
•  At high power, peak heat flux ≥ 9MW/

m2 even with high flux expansion ~60 
with U/L snowflake 

•  Numbers shown ignore radiation, 
plate tilt, strike-point sweeping 

•  Long-pulse + high IP and power may ultimately require active divertor cooling 
•  Passive cooling ok for low-IP scenarios 
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Radiative divertor control options are affected by 
NSTX-U plasma-facing component development plan 

Baseline All Mo PFCs Mo wall 
+ W divertor 

All Mo tiles All  
Mo divertor 

Upper  
Mo divertor 

Possible progressions 

5 yr plan 

C 
BN 

C 
BN 

Mo 

C 
BN 

Mo 

  
BN 

Mo Mo Mo 
W 

  Developing PFC plan to 
transition to full metal 
coverage for FNSF-
relevant PMI development 

  Wall conditioning: GDC, 
lithium and / or boron 
coatings 

  PFC bake-out at 
300-350oC 

  Radiative divertor elements affected by PFC choice: 
•  Divertor impurity gas handling and injection system 

–  D2, CD4, Ar with graphite PFCs and lithium coatings 
–  D2, N2, CD4, Ar  with refractory metal PFCs 

•  Diagnostic sensors for control 
•  Plasma Control System development 

Mo tiles
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Snowflake divertor geometry has benefits over standard 
X-point divertor geometry 

  Snowflake divertor 
•  Second-order null 

  Bp ~ 0 and grad Bp ~ 0 (Cf. first-order null: Bp ~ 0) 
•  Obtained with existing divertor coils (min. 2) 
•  Exact snowflake topologically unstable 
•  Deviation from ideal snowflake: σ = d / a 

–  d – distance between nulls, a – plasma minor radius 

  Predicted geometry properties (cf. standard divertor) 
•  Increased edge shear: ped. stability 
•  Add’l null: H-mode power threshold, ion loss 
•  Larger plasma wetted-area Awet  : reduce qdiv 

•  Four strike points    : share qII 
•  Larger X-point connection length Lx  : reduce qII 

•  Larger effective divertor volume Vdiv  : incr. Prad , PCX 

  Experiments: TCV and NSTX 

   
           snowflake-minus 
snowflake-plus 

Exact 
snowflake 
divertor 

D. D. Ryutov, PoP 14, 064502 2007 

*

+++
+
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NSTX: Snowflake divertor configurations obtained with 
existing divertor coils 
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Plasma-wetted area and connection length are 
increased by 50-90 % in snowflake divertor 

  These properties observed in first 30-50 
% of SOL width 

  Btot angles in the strike point region: 
1-2o, sometimes < 1o

Shot 141240, EFIT02, 
time: 0.905 s, 
normalized flux: 1.005
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Significant reduction of steady-state divertor heat flux 
observed in snowflake divertor (at PSOL~ 3 MW) 

  Partial detachment at or after snowflake formation time 
  Heat and ion fluxes in the outer strike point region decreased  
  Divertor recombination rate and radiated power are increased 
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Divertor profiles show low heat flux, broadened C III and  
C IV radiation zones in the snowflake divertor phase 

  Heat flux profiles reduced to nearly 
flat low levels, characteristic of 
radiative heating 

  Divertor C III and C IV brightness 
profiles broaden 

  High-n Balmer line spectroscopy and 
CRETIN code modeling confirm outer 
SP detachment with Te ≤ 1.5 eV,  

      ne ≤ 5 x 1020 m-3 

Also suggests a reduction of carbon 
physical and chemical sputtering rates 
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No leading edge PFC tile heating observed at shallow 
magnetic field incidence angles 
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NSTX experiments compared standard and snowflake 
divertors with and without extrinsic CD4 seeding 

  Goal of the experiment – develop high-performance H-mode 
discharge with reduced divertor heat flux 
•  Use highly-shaped configuration 
‒  κ=2.1, δ=0.8, drsep=6-7 mm (similar to λSOL) 

•  B x grad B toward lower divertor 

•  4 MW NBI, Ip=0.9 MA 
– Reference (attached standard divertor) 
–  Snowflake divertor (partially detached divertor due to 

intrinsic carbon radiation) 
– Radiative divertor in standard geometry with CD4 

seeding (partially detached divertor due to enhanced 
divertor density and carbon concentration) 

–  Snowflake divertor with CD4 seeding (partially detached 
divertor due to enhanced carbon radiation in low Te 
snowflake divertor) 
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Good H-mode confinement properties retained or slightly 
reduced with radiative divertor and snowflake divertor 

  0.9 MA, 4 MW H-mode  
  κ=2.1, δ=0.8 
  Core Te ~ 0.8-1 keV, Ti ~ 1 keV 
  βN ~ 4-5 
  Plasma stored energy ~ 250 kJ 
  H98(y,2) ~ 1 (from TRANSP) 
  ELMs 

  Suppressed in standard divertor H-
mode via lithium conditioning 

  Re-appeared in snowflake H-mode 
  Disappeared again in snowflake 

with CD4 seeding 
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Core carbon reduction obtained with snowflake 
divertor  

  Core carbon reduction due to 
•  Type I ELMs 
•  Edge source reduction 

•  Divertor sputtering rates reduced due to 
partial detachment 

  Good divertor screening for puffed 
CD4 
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Divertor heat flux reduced by radiation and/or geometry 
in radiative and snowflake divertors in NSTX 
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Snowflake divertor with CD4 seeding leads to increased 
divertor carbon radiation  

  Ip=0.9 MA, PNBI=4 MW, PSOL=3 MW 

  Snowflake divertor (from 0.6 ms) 
•  Peak divertor heat flux reduced from 

4-6 MW/m2 to 1 MW/m2 

  Snowflake divertor (from 0.6 ms)  
 + CD4 
•  Peak divertor heat flux reduced from 

4-6 MW/m2 to 1-2 MW/m2 
•  Divertor radiation increased further 
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Divertor profiles show enhanced radiation and 
recombination zone in snowflake divertor w/ and w/o CD4 
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Summary of divertor profiles 

Reference 
Snowflake 
Radiative divertor w/ CD4 
Snowflake+CD4 

  Divertor heat flux  
•  In snowflake divertor, flat ~ 1-2 MW/m2 profiles due to geometry and 

radiative heating 
•  In radiative divertor, peak reduction in strike point region only 

  Volumetric recombination 
•  Large ion sink in both radiative and snowflake discharges 
•  Larger in snowflake due to higher Lx (higher ion residence time) 

  Ion recombination time: τion~ 1−10 ms at Te =1.3 eV 
  Ion residence time: τion ≤ 3-6 ms in standard divertor, x 2 in snowflake 

  Divertor carbon radiation 
•  C III and C IV are main radiators 
•  Both C III and C IV radiation enhanced in snowflake geometry due to 

low Te and larger volume 
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Impurity-seeded radiative divertor with feedback and snowflake 
geometry are the leading NSTX-U heat flux mitigation candidates 

  NSTX-U scenarios with high Ip and Pin 
projected to challenge thermal limits of 
graphite divertor PFCs 

  Single and double-null radiative divertors and 
upper-lower snowflake configurations 
considered 
•  Supported by NSTX-U divertor coils and 

compatible with coil current limits  
  Snowflake divertor projections to NSTX-U 

optimistic 
•  UEDGE modeling shows radiative detachment 

of all snowflake cases with 3% carbon and up to 
PSOL~11 MW 
–  qpeak reduced from ~15 MW/m2 (standard) to 

0.5-3 MW/m2 (snowflake) 
  Snowflake divertor with impurity seeding for 

PSOL ~ 20 MW under study  

NSTX-U  
snowflake 
simulation

E. Meier (LLNL)


