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In NSTX, lithium conditioning led to impurity accumulation

 Lithium conditioning = impurity accumulation
— Lithium-induced edge stabilization suppresses ELMs, allowing
accumulation
* High impurity concentration can be problematic
— P,,4 up to 2 MW (largely due to high-Z impurities)
— Lack of density control - disruption
— Z.s Increase - resistivity increase > disruption
— Fuel dilution

 Impurity control techniques have been developed on NSTX

— ELM triggering with resonant magnetic perturbations (RMPSs) [Canik
PRL 2010]

— Control plasma-wall interaction during startup phase

— Partially detached divertor scenarios (gas puff, impurity seeding,
snowflake)

— Deuterium gas puffing [scotti APS 2010]
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Divertor deuterium puffing on NSTX reduced impurity
concentration by up to 30%

« ~1.25x 104" injected in 0.1 sec
— 2000 atom-amp (A) injection rate

(1s'=1.6x10"19A)
« Core plasma retains desirable
properties
« Quter divertor remains attached

« (Carbon concentration reduced
30%
* Deuterium puffing might...

— Reduce sputtered influx

— Modify parallel impurity transport
 Divertor impurity retention
* Other?

Carbon Concentration (%)

Carbon Concentration (%)

10.0

75F
50+
25

0

Line Density (115 cm-2)

0.3

© 9o
= N

|_Stored Energy (MJ) -

Z_eff

OO = =N

._w_

© = NWBho o= W U\ NO
| T

I~ Lower Divertor D-alpha (A.U.) ”! 7]

N
o

Core (R=105 cm) ]

20

_
wv

—
o

wv

Reference Edge (R=138 cm) 3

o

o

_J Gas Puff

: "*“*Eﬁ’r ‘H?
l}éw- - = B, g, {*5-“

A o

0 02 04 06 08 10 12

Time(s)

NSTX-U Plasma Facing Components — Modeling Core Impurity Reduction, E. T. Meier (July 2-6, 2012)



Divertor diagnostics include IR and visible cameras, divertor
spectrometry, and tile Langmuir probes
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The UEDGE 2D fluid transport code is used to study effects
of gas puffing on carbon transport

LROFITv3  06/05/2012 #138767 00700_0
Z (m) ‘LLL,

« Multi-species carbon model (C1* - C8*)
 0.96 <psi<1.028 > ~6 mm SOL
« Deuterium gas injection is modeled as a

cosine-shaped source with 0.2-m width at

outer UEDGE grid boundary
* Dpep=0.5m?s, y .= 1.5 m?s
« Target recycling is 90% [Canik PoP 2011];

: Wall recycling is 100%

*  Pgo =3 MW (split between ion and e
channels)

 Zero flux BC for neutral D and C at core
* Fixed core flux of D*
 No drift effects

* Inward carbon pinch, v;,.,=-25 m/s
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44x18 cells
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-  Scan from 0 to 1200 atom-amps
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R \ . .
L — Experimental rate is 2000 Afor 0.1 s
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UEDGE includes physical and chemical carbon sputtering

« UEDGE includes physical and chemical
sputtering of carbon

— Physical and chemical sputtering models are from
DIVIMP (U. Toronto)

— Actual NSTX vessel wall is far from outer UEDGE
boundary
Sputter yield reduced 10x at outer UEDGE boundary

= Tiarger=200 Kand T,,,,=300 K assumed for all gas
puff rates

Experimental Ty, 4 drops from ~600 Kto ~400 K

« Lithium coating effects are not modeled

— Complicated Li-C-D-O interaction still under
investigation [e.g., Scotti PSI 2012]

« C-C and Li-C sputtering not included

— C self-sputtering could be significant because of
resonance between bombarding and target
particles and the large (~10%) concentration of C
near targets

But, this effect is probably not as important as Li
coating!

— Li-C probably not as important (no resonance)

Reducing energy from 100 to 20 eV,
chemical sputtering goes up and physical
sputtering goes down.
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Midplane T, matches well; T;, n

n:, not well-matched
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* Note that the experimental data is shifted such that T,=75 eV at the separatrix (to match the UEDGE solution)
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Outer divertor D profiles show good agreement;
UEDGE CIl intensities are too high
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Outer divertor sees large temperature and heat flux reduction
with 1000 A injection
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UEDGE plasma conditions are NSTX-relevant

« UEDGE edge plasma conditions suffice for qualitative assessment of
divertor D, injection
— Initial goal is to look for qualitative physical trends

« Close matching left for future work

— T, is reasonably well matched
» Could collect data from many times to “fill out” radial profile since Thomson gives only a few
points in the radial range of interest
— n, is not closely matched
* Must reduce n, (at given T,) while matching heat flux profiles
* Must modify model to avoid rise in ne with increasing divertor gas puff

— T, and n, are not closely matched
« Should tailor profiles of diffusivity and convective velocity
» To get higher T,, might need to modify 50/50 split of P55, between ions and e (e.g., 70/30 i/e-
split)
— Comparison of Cll emission suggests that UEDGE model could be improved by
accounting for effects of lithium coating on sputtering
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Carbon concentration is reduced with increasing deuterium
gas injection

Carbon point conc. @ mp sep. vs. Igas
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Total sputtered flux remains nearly constant

Sputtered flux vs. Igas . SpUttered flux is dominated by
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D gas injection causes D and C flow away from outer divertor
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Parallel forces on carbon exhibit the expected balance

Data is plotted along a field line on the 2 mm flux surface.
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Deuterium parallel flow changes dramatically in the SOL,
affecting carbon distribution

Data is plotted along a field line on the 2 mm flux surface.

Total carbon ion density
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Conclusions

« UEDGE gas puff study shows carbon impurity reduction with
divertor deuterium gas injection
— Observed reduction trend is consistent with experiment
— Reduction seems related to “flow-through” of C past outer midplane
— Reduction of carbon source is not seen

« Simulations could be improved in future work
— Double null grid would give larger SOL and include upper divertor
physics
— More closely matching midplane profiles and divertor spectroscopy
would increase confidence

— Improved sputtering model could account for lithium divertor target
coatings
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