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Significant heat flux reduction between and during 
ELMs observed in NSTX and DIII-D snowflake divertors 

Outline of talk 
§  Snowflake divertor configuration 
§  Snowflake divertor in NSTX 

•  Facilitated access to detachment 
•  Heat flux reduction compatible with H-mode 

§  Snowflake divertor in DIII-D 
•  Heat flux reduction compatible with H-mode 
•  Cryopump density control within  

 ne/nG = 0.4-0.75 
•  Detachment and ELM heat flux 

§  Projections for NSTX-Upgrade 
§  Conclusions *!
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Snowflake divertor geometry takes advantage of Bp 
structure in second-order null region 

Snowflake-minus 
 Snowflake-plus 

Exact 
snowflake 
 

*!

+!
+!

+!+!

D. D. Ryutov, PoP 14, 064502 2007; 
EPS 2012 Invited, PPCF 54, 124050 (2012)  

§  Predicted properties 
•  Increased edge shear: ped. stability 
•  Add’l null: H-mode power threshold, ion loss 
•  Larger plasma wetted-area Awet : reduce qdiv 

•  Four strike points : share qII 
•  Larger X-point connection length Lx : reduce qII 

•  Larger effective divertor volume Vdiv : incr. Prad  

•  High βp convective zone D* ≤ a (a βpm / R)1/4 

§  Snowflake divertor configuration 
•  Second-order null 

-  Bp ~ 0 and grad Bp ~ 0 (Cf. first-order null: Bp ~ 0) 
•  Exact snowflake topologically unstable 
•  Deviation from exact snowflake  
-  d ≤  a (λq / a)1/3 where d – distance between nulls, 

a – plasma minor radius, λq – SOL width 
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Snowflake configurations sustained in NSTX and DIII-D for 
many τE’s with divertor coil currents within safety margins 

§  Divertor coil currents 0.5-4 kA 
within safety margins 

§  Steady-state snowflake 
configurations  
•  NSTX: 0.5 s 
•  DIII-D: 3 s 

Standard divertor      Snowflake-minus       Exact snowflake 

Standard divertor              Snowflake-minus 
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Snowflake divertor in NSTX compatible with H-mode 
confinement, facilitated access to partial detachment 

§  Graphite PFCs with lithium coatings 
§  Ip = 0.9 MA, PNBI = 4 MW, PSOL ~ 3 MW  
§  qpeak ≤ 8 MW/m2, q|| ≤ 100 MW/m2 

 
With snowflake divertor 

§  H-mode confinement unchanged 
•  WMHD~250 kJ, H98(y,2)~ 1, βN~5 

§  Core impurity reduced by up to 50 % 
§  Suppressed ELMs re-appeared 
§  Divertor heat flux significantly reduced 

•  Between ELMs 
•  During Type-I ELMs (ΔW/W ~ 5-15 %) 
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In DIII-D, peak divertor heat flux reduction by 
50-60 % between ELMs due to geometry 

§  Graphite PFCs 
§  Ip = 1.2 MA, PNBI = 5 MW, PSOL ~ 3 MW  
§  qpeak ≤ 2 MW/m2, q|| ≤ 100 MW/m2 

§  Obtained snowflake-minus for up to 3 s 
duration over ne/nG = 0.4 – 0.75 using 
cryo-pump for density control 

§  In lower-density snowflake H-mode 
•  Confinement unaffected  
•  Divertor attached 
-  Divertor Prad similar to standard div. 

•  Divertor heat flux reduced 
-  Plasma-wetted area increased up to 80 % 
-  Connection length increased up to 75 % 

Standard, Snowflake 
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Heat flux in snowflake divertor is further reduced 
during partial detachment in DIII-D 

§  In higher-density snowflake H-mode 
•  Density ne/nG = 0.55-0.75 

•  Partial detachment onset (ne) similar in 
standard and snowflake (preliminary) 

•  Peak heat flux is up to 50 % lower in partially 
detached snowflake vs partially detached 
standard divertor 

•  Lower divertor rad. power broadly distributed 
in partially detached snowflake 

•  No MARFEs 

Standard, Snowflake 

Standard                            Snowflake 
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In DIII-D, Type-I ELM heat loads reduced in  
D2-seeded (partially detached) snowflake divertor 

§  At lower density, heat flux channels close to 
primary and second separatrices during ELMs 
•  Additional strike points 

§  At high density (partial detachment), ELM heat 
flux significantly reduced 
•  50-75 % lower than in standard partially detached 

Snowflake!

Standard   Snowflake 

Standard               Snowflake 

ne/nG = 0.45  
ne/nG = 0.60  
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Snowflake divertor is a leading heat flux mitigation 
candidate for NSTX-Upgrade 

§  Predictions for 12 MW NBI 
•  2D multifluid code UEDGE 
•  PSOL=9 MW, 4 % carbon 
•  D, χ to match λq 
•  Outer divertor attached 

–  Te, Ti ≤ 80 eV 

 

New center-stack! 2nd neutral beam!
BT !
Ip!

PNBI !
pulse!

1 T!
2 MA!

12 MW!
5 s!

§  NSTX-U Mission elements: 
•  Advance ST as candidate for Fusion Nuclear 

Science Facility  
•  Develop solutions for the plasma-material interface 

challenge 
•  Explore unique ST parameter regimes to advance 

predictive capability for ITER 
•  Develop ST as fusion energy system 
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Developing the Power Exhaust Solution for the Tokamak 
with the Snowflake Divertor in NSTX and DIII-D 

§  Large zone of low poloidal field in divertor resulting in significant 
geometry benefits for heat exhaust 

§  Steady-state configurations with existing divertor coils 

§  Significant peak divertor heat flux reduction between and during 
Type I ELMs compatible with high H-mode confinement 

§  Initial confirmation of compatibility with cryo-pump density control 

§  Potential to combine with radiative divertor solution 
 
§  Favorable projections for NSTX-Upgrade with 12 MW NBI power 
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Backup slides 
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Various techniques developed for reduction of heat 
fluxes q|| (divertor SOL) and qpeak (divertor target) 

§  Recent ideas to improve standard divertor geometry 
•  Snowflake divertor (D. D. Ryutov, PoP 14, 064502 2007) 
•  X-divertor (M. Kotschenreuther et. al, IC/P6-43, IAEA FEC 2004) 
•  Super-X divertor (M. Kotschenreuther et. al, IC/P4-7, IAEA FEC 2008) 

fexp =
(Bp/Btot)MP

(Bp/Btot)OSP

qpk ⇥
Pheat (1� frad)fout/totfdown/tot(1� fpfr) sin�

2⇤RSP fexp⇥q||

Awet = 2⇥R fexp �q�
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Heat flux mitigation is more challenging in 
compact divertor of spherical torus 

§  NSTX 
•  Ip = 0.7-1.4 MA, tpulse < 1.5 s, Pin ≤ 7.4 MW (NBI) 
•  ATJ and CFC graphite PFCs 
•  P / R ~ 10 
•  qpk ≤ 15 MW/m2 

•  q|| ≤ 200 MW/m2 

Quantity NSTX DIII-D 

Aspect ratio 1.4-1.5 2.7 
In-out plasma boundary area ratio 1:3 2:3 
X-point to target parallel length Lx (m) 5-10 10-20 
Poloidal magnetic flux expansion fexp at outer SP 5-30 3-15 
Magnetic field angle at outer SP (deg.) 1-10 1-2 
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Snowflake divertor configurations obtained with 
existing divertor coils in NSTX 
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Snowflake divertor configurations obtained with existing 
divertor coils, maintained for up to 10 τE 
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NSTX: Plasma-wetted area and connection length 
are increased by 50-90 % in snowflake divertor 

§  These properties observed in first 30-50 % of SOL width (λq~6 mm) 
§  Btot angles in the strike point region: 1-2o, sometimes < 1o 

•  Concern for hot-spot formation and sputtering from divertor tile edges 
•  Can be alleviated by q|| reduction due to radiative detachment and power 

partitioning between strike points 
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Snowflake divertor configurations obtained with 
existing divertor coils in DIII-D 
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Snowflake configurations obtained from the standard 
divertor using an algorithm developed at NSTX 

§  Grad-Shafranov equilibria modeling of possible 
configurations 

§  Inner and outer strike point positions controlled by PCS 
using F4B and F8B coils 

§  Secondary null-point formed and pushed in using F5B 

+ 

+ 

+ 
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Impulsive heat loads due to Type I ELMs are 
mitigated in snowflake divertor 

§  H-mode discharge, WMHD ~ 220-250 kJ 
•  Type I ELM (W/ΔW ~ 5-8 %) 

Steady-state                     At ELM peak  
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Good H-mode confinement properties and core 
impurity reduction obtained with snowflake divertor 

§  0.9 MA, 4 MW H-mode  
§  κ=2.1, δ=0.8 
§  Core Te ~ 0.8-1 keV, Ti ~ 1 keV 
§  βN ~ 4-5 
§  Plasma stored energy ~ 250 kJ 
§  H98(y,2) ~ 1 (from TRANSP) 
§  ELMs 

§  Suppressed in standard divertor 
H-mode via lithium conditioning 

§  Re-appeared in snowflake H-
mode 

§  Core carbon reduction due to 
•  Type I ELMs 
•  Edge source reduction 

•  Divertor sputtering rates reduced due 
to partial detachment 
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Core carbon density significantly reduced with 
snowflake divertor 
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Good H-mode confinement properties retained or 
slightly reduced with CD4-seeded snowflake divertor 
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Divertor profiles show enhanced radiation and 
recombination zone in snowflake divertor w/ and w/o CD4 
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NSTX: Access to radiative detachment with 
intrinsic carbon in snowflake divertor facilitated 

§  Snowflake divertor (*): PSOL~3-4 MW, fexp~40-60, qpeak~0.5-1.5 MW/m2 
§  Low detachment threshold 
§  Detachment characteristics comparable to PDD with D2 or CD4 puffing 
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Pedestal profiles very similar with and without SF(-) 

•  Slightly steeper and higher ne, lower and flatter Te 
with SF- 

Electron Density ne!
Electron Temperature Te!

S. L. Allen et al., Paper PD/1-2, IAEA FEC 2012. 
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Detailed ELM analysis before/during SF 
shows: 
 
•  Pedestal Energy (WPEDESTAL) 

Constant 
•  Confinement Constant 
•  Change in stored energy lost per 

ELM (ΔWELM) is reduced 

•  Consistent with Loarte connection 
length scaling  

Detailed ELM Analysis: ΔW(ELM) decreased,  
W pedestal constant in SF 

S. L. Allen et al., Paper PD/1-2, IAEA FEC 2012. 


