

Snowflake Divertor Studies in DIII-D and NSTX Aimed at the Power Exhaust Solution for the Tokamak

V. A. Soukhanovskii

Lawrence Livermore National Laboratory, Livermore, California, USA

for the NSTX-U and DIII-D Research Teams

Co-authors and Acknowledgements

S. L. Allen¹, E. Kolemen², T. H. Osborne³, J. A. Boedo⁴,

M. E. Fenstermacher¹, R.J. Groebner³, D.N. Hill¹, A.W. Hyatt³,

C. J. Lasnier¹, A. W. Leonard³, M. A. Makowski¹, W.H. Meyer¹,

A.G. McLean¹, T.W. Petrie³, D. D. Ryutov¹, J.G. Watkins⁵,

R.E. Bell², A. Diallo², S. Gerhardt², R. Kaita², S. Kaye², B.P. LeBlanc²,

R. Maingi², E. T. Meier¹, J.E. Menard², M. Podesta², R. Raman⁶,

A.L. Roquemore², and F. Scotti²

¹Lawrence Livermore National Laboratory, Livermore, CA 94550, USA ²Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451, USA ³General Atomics, San Diego, CA 92186-5608, USA ⁴University of California San Diego, La Jolla, CA 92093-0417, USA ⁵Sandia National Laboratories, Livermore, CA 94550, USA ⁶University of Washington, Seattle, WA 98105, USA

Work supported in part by the US DoE under DE-AC52-07NA27344, DE-AC52-07ER27344, DE-FC02-04ER54698, DE-AC02-09CH11466, and DE-FG02-07ER54917.

Significant heat flux reduction between and during ELMs observed in NSTX and DIII-D snowflake divertors

Outline of talk

- Snowflake divertor configuration
- Snowflake divertor in NSTX
 - Facilitated access to detachment
 - Heat flux reduction compatible with H-mode
- Snowflake divertor in DIII-D
 - Heat flux reduction compatible with H-mode
 - Cryopump density control within $n_e/n_G = 0.4-0.75$
 - Detachment and ELM heat flux
- Projections for NSTX-Upgrade
- Conclusions

Snowflake divertor geometry takes advantage of B_p structure in second-order null region

Snowflake divertor configuration

- Second-order null
 - $B_p \sim 0$ and grad $B_p \sim 0$ (Cf. first-order null: $B_p \sim 0$)
- Exact snowflake topologically unstable
- Deviation from exact snowflake
 - d ≤ a (λ_q / a)^{1/3} where d distance between nulls, a – plasma minor radius, λ_q – SOL width

Predicted properties

- Increased edge shear: ped. stability
- Add'I null: H-mode power threshold, ion loss
- Larger plasma wetted-area A_{wet} : reduce q_{div}
- Four strike points : share q_{II}
- Larger X-point connection length L_x : reduce q_{II}
- Larger effective divertor volume V_{div} : incr. P_{rad}
- High β_p convective zone D* \leq a (a β_{pm} / R)^{1/4}

EPS 2012 Invited, PPCF 54, 124050 (2012)

Snowflake configurations sustained in NSTX and DIII-D for many τ_E 's with divertor coil currents within safety margins

Snowflake divertor in NSTX compatible with H-mode confinement, facilitated access to partial detachment

- Graphite PFCs with lithium coatings
- $I_p = 0.9 \text{ MA}, P_{NBI} = 4 \text{ MW}, P_{SOL} \sim 3 \text{ MW}$
- $q_{peak} \le 8 \text{ MW/m}^2, q_{||} \le 100 \text{ MW/m}^2$

With snowflake divertor

- H-mode confinement unchanged
 - W_{MHD}~250 kJ, H98(y,2)~ 1, β_N~5
- Core impurity reduced by up to 50 %
- Suppressed ELMs re-appeared
- Divertor heat flux significantly reduced
 - Between ELMs
 - During Type-I ELMs (Δ W/W ~ 5-15 %)

NSTX

In DIII-D, peak divertor heat flux reduction by 50-60 % between ELMs due to geometry

- Graphite PFCs
- $I_p = 1.2 \text{ MA}, P_{NBI} = 5 \text{ MW}, P_{SOL} \sim 3 \text{ MW}$
- $q_{peak} \le 2 \text{ MW/m}^2$, $q_{\parallel} \le 100 \text{ MW/m}^2$
- Obtained snowflake-minus for up to 3 s duration over n_e/n_G = 0.4 – 0.75 using cryo-pump for density control
- In lower-density snowflake H-mode
 - Confinement unaffected
 - Divertor attached
 - Divertor P_{rad} similar to standard div.
 - Divertor heat flux reduced
 - Plasma-wetted area increased up to 80 %
 - Connection length increased up to 75 %

Heat flux in snowflake divertor is further reduced during partial detachment in DIII-D

- In higher-density snowflake H-mode
 - Density $n_e/n_G = 0.55-0.75$
 - Partial detachment onset (n_e) similar in standard and snowflake (preliminary)
 - Peak heat flux is up to 50 % lower in partially detached snowflake vs partially detached standard divertor
 - Lower divertor rad. power broadly distributed in partially detached snowflake
 - No MARFEs

In DIII-D, Type-I ELM heat loads reduced in D₂-seeded (partially detached) snowflake divertor

Lawrence Livermore

National Laboratory

- At lower density, heat flux channels close to primary and second separatrices during ELMs
 - Additional strike points
- At high density (partial detachment), ELM heat flux significantly reduced

50-75 % lower than in standard partially detached

V. A. SOUKHANOVSKII, 40th EPS, Espoo, Finland, 2 July 2013 9 of 24

Snowflake divertor is a leading heat flux mitigation candidate for NSTX-Upgrade

NSTX-U Mission elements:

Lawrence Livermore National Laboratory

- Advance ST as candidate for Fusion Nuclear Science Facility
- Develop solutions for the plasma-material interface challenge
- Explore unique ST parameter regimes to advance predictive capability for ITER
- Develop ST as fusion energy system

- Predictions for 12 MW NBI
 - 2D multifluid code UEDGE
 - *P*_{SOL}=9 MW, 4 % carbon
 - D, χ to match λ_q
 - Outer divertor attached - T_e , $T_i \le 80 \text{ eV}$

V. A. SOUKHANOVSKII, 40th EPS, Espoo, Finland, 2 July 2013 — 10 of 24

Developing the Power Exhaust Solution for the Tokamak with the Snowflake Divertor in NSTX and DIII-D

- Large zone of low poloidal field in divertor resulting in significant geometry benefits for heat exhaust
- Steady-state configurations with existing divertor coils
- Significant peak divertor heat flux reduction between and during Type I ELMs compatible with high H-mode confinement
- Initial confirmation of compatibility with cryo-pump density control
- Potential to combine with radiative divertor solution
- Favorable projections for NSTX-Upgrade with 12 MW NBI power

Backup slides

Bibliography

Theory

- D. D. Ryutov, PoP 14 (2007), 064502
- D. D. Ryutov et al., Plasma Phys. Control. Fusion 52 (2010) 105001.
- D. D. Ryutov, Contrib. Plasma Phys. 52 (2012) 539.
- D. D. Ryutov et al., Plasma Phys. Control. Fusion 54 (2012) 124050
- D. D. Ryutov et al., Paper TH/P4-18, IAEA FEC 2012

DIII-D

S. L. Allen et al., Paper PD/1-2, IAEA FEC 2012.

NSTX

V. A. Soukhanovskii et al., Nucl. Fusion 51 (2011) 012001.

- V. A. Soukhanovskii et al., Phys. Plasmas 19 (2012) 082504.
- V. A. Soukhanovskii et al., Paper EX/P5-21, IAEA FEC 2012.

Various techniques developed for reduction of heat fluxes q_{\parallel} (divertor SOL) and q_{peak} (divertor target)

$$q_{pk} \simeq \frac{P_{heat} (1 - f_{rad}) f_{out/tot} f_{down/tot} (1 - f_{pfr}) \sin \alpha}{2\pi R_{SP} f_{exp} \lambda_{q_{||}}}$$

$$A_{wet} = 2\pi R f_{exp} \lambda_{q_{\parallel}} \qquad f_{exp} = \frac{(B_p/B_{tot})_{MP}}{(B_p/B_{tot})_{OSP}}$$

- Recent ideas to improve standard divertor geometry
 - Snowflake divertor (D. D. Ryutov, PoP 14, 064502 2007)
 - X-divertor (M. Kotschenreuther *et. al*, IC/P6-43, IAEA FEC 2004)
 - Super-X divertor (M. Kotschenreuther *et. al*, IC/P4-7, IAEA FEC 2008)

Heat flux mitigation is more challenging in compact divertor of spherical torus

- NSTX
 - $I_p = 0.7-1.4 \text{ MA}, t_{\text{pulse}} < 1.5 \text{ s}, P_{in} \le 7.4 \text{ MW} (\text{NBI})$
 - ATJ and CFC graphite PFCs
 - P/R~10
 - $q_{pk} \le 15 \text{ MW/m}^2$
 - $q_{\parallel} \leq 200 \text{ MW/m}^2$

Quantity	NSTX	DIII-D
Aspect ratio	1.4-1.5	2.7
In-out plasma boundary area ratio	1:3	2:3
X-point to target parallel length L_x (m)	5-10	10-20
Poloidal magnetic flux expansion f_{exp} at outer SP	5-30	3-15
Magnetic field angle at outer SP (deg.)	1-10	1-2

Snowflake divertor configurations obtained with existing divertor coils in NSTX

NSTX

Snowflake divertor configurations obtained with existing divertor coils, maintained for up to 10 τ_{E}

NSTX: Plasma-wetted area and connection length are increased by 50-90 % in snowflake divertor

- These properties observed in first 30-50 % of SOL width ($\lambda_a \sim 6 \text{ mm}$)
- B_{tot} angles in the strike point region: 1-2°, sometimes < 1°
 - Concern for hot-spot formation and sputtering from divertor tile edges
 - Can be alleviated by q_{\parallel} reduction due to radiative detachment and power partitioning between strike points

Snowflake divertor configurations obtained with existing divertor coils in DIII-D

Snowflake configurations obtained from the standard divertor using an algorithm developed at NSTX

using F4B and F8B coils
Secondary null-point formed and pushed in using F5B

awrence Livermore

lational Laboratory

V. A. SOUKHANOVSKII, 40th EPS, Espoo, Finland, 2 July 2013 20

49736, ruh\Щ∰EFIT01, time = 4400.00

MDSplus, shot =

20 of 24

Impulsive heat loads due to Type I ELMs are mitigated in snowflake divertor

Lawrence Livermore National Laboratory

V. A. SOUKHANOVSKII, 40th EPS, Espoo, Finland, 2 July 2013 _____ 21 of 24

NSTX

Good H-mode confinement properties and core impurity reduction obtained with snowflake divertor

onal Laboratory

- 0.9 MA, 4 MW H-mode
- κ=2.1, δ=0.8
- Core $T_e \sim 0.8-1 \text{ keV}$, $T_i \sim 1 \text{ keV}$
- β_N ~ 4-5
- Plasma stored energy ~ 250 kJ
- H98(y,2) ~ 1 (from TRANSP)
- ELMs
 - Suppressed in standard divertor H-mode via lithium conditioning
 - Re-appeared in snowflake Hmode
- Core carbon reduction due to
 - Type I ELMs
 - Edge source reduction
 - Divertor sputtering rates reduced due to partial detachment

Core carbon density significantly reduced with snowflake divertor

WNSTX

Lawrence Livermore National Laboratory

Good H-mode confinement properties retained or slightly reduced with CD₄-seeded snowflake divertor

National Laboratory

V. A. SOUKHANOVSKII, 40th EPS, Espoo, Finland, 2 July 2013 **24** of 24

Divertor profiles show enhanced radiation and recombination zone in snowflake divertor w/ and w/o CD₄

NSTX: Access to radiative detachment with intrinsic carbon in snowflake divertor facilitated

- Snowflake divertor (*): P_{SOL}~3-4 MW, f_{exp}~40-60, q_{peak}~0.5-1.5 MW/m²
 - Low detachment threshold
 - Detachment characteristics comparable to PDD with D₂ or CD₄ puffing

Pedestal profiles very similar with and without SF(-)

Slightly steeper and higher n_e, lower and flatter T_e with SF-

S. L. Allen et al., Paper PD/1-2, IAEA FEC 2012.

Detailed ELM Analysis: ∆W(ELM) decreased, W pedestal constant in SF

Detailed ELM analysis before/during SF shows:

Pedestal Energy (W_{PEDESTAL}) Constant

Confinement Constant

- Change in stored energy lost per ELM (ΔW_{ELM}) is reduced
- Consistent with Loarte connection length scaling

S. L. Allen et al., Paper PD/1-2, IAEA FEC 2012.

