Disruption event chain characterization capability started as next step in disruption avoidance plan

[DOE report on Transient events (2015)]

- Approach to disruption prevention
 - Identify disruption event chains and elements
 - Predict events in disruption chains
 - Cues disruption avoidance systems to break event chains
 - Attack events at several places with active control
 - Builds upon both physics and control successes of NSTX

NSTX-U

Disruption Event Characterization And Forecasting (DECAF) code is structured to ease parallel development

- Physical event modules
 - Present grouping follows work of deVries
 [P.C. de Vries et al., Nucl. Fusion 51, 053018 (2011)]
 - BUT, easily appended or altered
- Warning algorithms
 - Present approach follows
 [S.P. Gerhardt et al., Nucl. Fusion 53, 063021 (2013)]
 - More flexible: arbitrary number of tests, thresholds, and user-defined levels and warning points

Kinetic RWM analysis used as a reduced stability model in DECAF

Examples of some threshold tests currently included in DECAF

Group	Disruption chain event		Points	Test Criteria	Test Thresholds	Points
NL	Greenwald limit	GWL	3	Greenwald density limit	$\left[0.90, 0.95, 0.99 ight]$	[1,2,3]
	Low density (error field)	LON	3	Decrease in line density $(10^{14} \text{ cm}^3/\text{s})$ too large	[-10.0, -20.0, -30.0]	[1,2,3]
				Line density (10^{14} cm^3) too low	[0.3, 0.2, 0.1]	[1,2,3]
MS	Vertical stability control	VSC	5	Axis position (m)	[0.05, 0.075, 0.10]	[1,2,3]
				Axis velocity (m/s)	[3.93, 6.54, 9.01]	[1,2,3]
				Excessive ZdZdt (m/s^2)	[0.20, 0.41, 0.84]	[1,2,3]
	Resistive wall mode	RWM	3	$B_p^{n=1}$ lower component (G) too large	[10, 20, 30]	[1,2,3]
	Low edge q	LOQ	3	Safety factor $q*$ too low	[3.0, 2.5, 2.0]	[1,2,3]
				Safety factor q_{95} too low	[3.0, 2.5, 2.0]	[1,2,3]
	Sawtooth	SAW	3	Safety factor q_0 too low	[1.05, 1.00, 0.95]	[1,2,3]
	High pressure peaking	PRP	3	Excessive $p_0/\langle p \rangle$	[3.5, 4.0, 4.5]	[1,2,3]
TD	Plasma current request	IPR	3	$ I_p^{req} - I_p /I_p^{req} >$	[0.05, 0.10, 0.15]	[1,2,3]
	Wall proximity control	WPC	3	Inner gap (m) too small	[0.03, 0.02, 0.01]	[1,2,3]
				Outer gap (m) too small	[0.03, 0.02, 0.01]	[1,2,3]
				Upper gap (m) too small	[0.03, 0.02, 0.01]	[1,2,3]
				Bottom gap (m) too small	[0.03, 0.02, 0.01]	[1,2,3]
\mathbf{PC}	High heat/radiation load	HHL	3	Radiated power fraction too high	[0.2, 0.3, 0.4]	[1,2,3]

DECAF uses threshold tests and more sophisticated models to declare events and event chains

Tests can be combined with "warning points"

NSTX-U

Initial DECAF results detects disruption chain events when applied to dedicated 45 shot NSTX RWM disruption database

NSTX-U

Initial DECAF analysis finding common disruption event chains, giving new insight

- Earlier RWM events *not* false positives
 - cause large decreases in β_N and stored energy with subsequent recovery (minor disruptions)

- Identifying common chains of events can provide insight into how to cue avoidance systems
 - 5 (out of theoretically 56) two-event combinations followed 77% of RWM cases (that occurred within $20\tau_w$ of DIS)

DECAF now incorporates a reduced kinetic MHD stability model for global MHD

MISK calculations validated against unstable experimental plasmas; reproduce approach towards marginal stability

- MISK calculations including kinetic effects have been tested against many marginally stable NSTX experimental cases
- **NSTX-U**

Physics understanding from previous research using full model, used to construct a reduced kinetic model

- Goal is to forecast γ in real-time using parameterized reduced models for δW terms
- Need δW_{κ} as a function of the most important, real-time measurable quantities

NSTX-U

EPS 2017 – Characterization and Forecasting of Global and Tearing Stability – J.W. Berkery 10 June 26-30, 2017

Goal is to forecast mode growth rate in real-time using parameterized reduced models for δW terms

RWM dispersion relation

[B. Hu et al., Phys. Rev. Lett. 93, 105002 (2004)]

Gaussian functions are used for

DECAF contains modeled kinetic quantities for generation of stability maps

NSTX-U

DECAF reduced kinetic model results initially tested on a database of NSTX discharges with unstable RWMs

- 84% of shots are predicted unstable
- 44% predicted unstable < 320 ms (approx. $60\tau_w$) before current quench
- 33% predicted unstable within 100 ms of a minor disruption

Reduced kinetic model distinguishes between stable and unstable NSTX discharges

- If $<\omega_{F} > \sim 0$ warnings are eliminated, 10/13, or 77%, of stable cases are stable in the model
- Model is successful in first incarnation - development continues to improve forecasting performance

Tradeoff: missed vs. early warnings

Essential new step for DECAF analysis of general tokamak data: Identification of rotating MHD (e.g. NTMs)

- Initial goals
 - Create portable code to identify existence of rotating MHD modes
 - Track characteristics that lead to disruption
 - e.g. rotation bifurcation, mode lock
- Approach
 - Apply FFT analysis to determine mode frequency, bandwidth evolution
 - Determine bifurcation and mode locking

Many shots with rotating MHD (e.g. NTMs) examined for NSTX and NSTX-U – two illustrated here

Magnetic spectrogram of rotating MHD mode locking termination

NSTX 138854

NSTX-U 204202

□ NSTX "stable periods" – enhanced by high elongation ($\kappa \sim 2.7$), lithium wall conditioning

 NSTX-U: rotating MHD more common (so far, lower (κ ~ 2.3), no Li wall conditioning)

Fast Fourier transforms used to find mode peak frequency within a time interval

- Reveals potential issues handling multiple frequency peaks
- Now adding processing of toroidal array / *n* number discrimination

The characterization algorithm shows that the expected bifurcation and locking events can be found

 Algorithm written looks for a "quasi-steady state" period, a potential bifurcation, and possible mode locking

DECAF rotating MHD analysis identifies the state of the modes found (n = 1)

Magnetic signal / analysis (mode locking / unlocking)

NSTX-U

DECAF rotating MHD analysis identifies the state of the modes found (n = 2)

Magnetic signal / analysis (mode present, not locked)

NSTX-U

EPS 2017 – Characterization and Forecasting of Global and Tearing Stability – J.W. Berkery June 26-30, 2017 20

Summary and next steps

- The Disruption Event Characterization and Forecasting code (DECAF)
 - Focuses on quantitative statistical characterization of the chains of events which most often lead to disruption of plasmas
 - The ultimate goal is to provide forecasts which integrate with a disruption avoidance system and are utilized in real-time during a device's operation
- Reduced kinetic model for disruption avoidance is implemented
 - Success rate is surprisingly high given its initial state and relative simplicity
- Rotating MHD is ubiquitous; Identification is essential
 - Characterization algorithm utilizes FFT, finds expected bifurcation and locking
- Next steps to the development and usage of DECAF include:
 - Continued improvement of accuracy of event determination
 - Significant expansion of events and event chains
 - Expansion of the dataset to multiple devices (including DIII-D., KSTAR)

*This work supported by the US DOE contracts DE-AC02-09CH11466, DE-FG02-99ER54524, and DE-SC0016614

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Characterization and Forecasting of Global and Tearing Mode Stability for Tokamak Disruption Avoidance

Jack Berkery Columbia University

S.A. Sabbagh¹, Y.S. Park¹, J.D. Riquezes¹, S.P. Gerhardt², C.E. Meyers² ¹Columbia University, ²Princeton Plasma Physics Laboratory

> 44th EPS Conference on Plasma Physics Belfast, UK, June 26-30, 2017

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

*This work supported by the US DOE contracts DE-AC02-09CH11466 and DE-FG02-99ER54524

