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Disruption Event Characterization And Forecasting (DECAF)
code is structured to ease parallel development

Code control Physical event

* Physical event modules
workbooks modules

— Present grouping follows work of deVries
[P.C. de Vries et al., Nucl. Fusion 51,
Density Limits 053018 (2011)]

— BUT, easily appended or altered

Confinement
v . .
Main data — * Warning algorithms
structure ) Technical issues
- — Present approach follows
[S.P. Gerhardt et al., Nucl. Fusion 53,
Tokamak 063021 (2013)]
dynamics . .
— More flexible: arbitrary number of tests,
\ 2 thresholds, and user-defined levels and
Output Power/current warning points
processing handling

Kinetic RWM analysis used as a

.@>/ reduced stability model in DECAF
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Examples of some threshold tests currently included in DECAF

Group Disruption chain event Points Test Criteria Test Thresholds |Points
Greenwald limit GWL| 3 Greenwald density limit [0.90,0.95,0.99] {[1,2,3]

NI Low density (error field)| LON | 3 Decrease in line densit.ylglﬂl‘lgcnl?’/s) too large|[-10.0,-20.0,-30.0]| [1,2,3]
Line density (10°* cm”) too low [0.3,0.2,0.1] [1,2,3]

Axis position (m) [0.05,0.075,0.10] | [1,2,3]

Vertical stability control | VSC 5 Axis velocity (m/s) 3.93,6.54,9.01] |[1.,2,3]

\S Excessive ZdZdt (m/s?) [0.20,0.41,0.84] |[1,2,3]
_ Resistive wall mode |RWM| 3 BJ=" lower component (G) too large [10,20,30] [1,2,3]
Low edge q LoQ| 3 Safety factor g* too low (3.0,2.5,2.0] [1,2,3]

Safety factor gos too low (3.0,2.5,2.0] [1,2,3]

Sawtooth SAW | 3 Safety factor go too low [1.05,1.00,0.95] {[1,2,3]

High pressure peaking | PRP | 3 Excessive po/{p) [3.5,4.0,4.5] 1,2,3]
Plasma current request | IPR 3 |17 — Ip| /1557 > [0.05,0.10,0.15] {[1,2,3]

Inner gap (m) too small [0.03,0.02,0.01] {[1,2,3]

b Wall proximity control | WPC| 3 Outer gap (m) too small [0.03,0.02,0.01] {[1,2,3]
Upper gap (m) too small [0.03,0.02,0.01] |[1,2,3]

Bottom gap (m) too small (0.03,0.02,0.01] |[1,2.,3]

PC |High heat/radiation load| HHL | 3 Radiated power fraction too high [0.2,0.3,0.4] [1,2,3]
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DECAF uses threshold tests and more sophisticated models to
declare events and event chains

6 14013|2 . . .
M | * Example DECAF analysis on single NSTX
" 21 NSTX - discharge
! | | — Ex: RWM B,"! threshold 306G (6B/B0 ~ 0.67%)
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Tests can be combined with “warning points”

Example DECAF analysis on single NSTX
discharge
— Ex: VSC uses Z, dZ/dt, and Zdz/dt

darnin eve
Warning Level
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Initial DECAF results detects disruption chain events when
applied to dedicated 45 shot NSTX RWM disruption database

VSC: Vertical stability control
IPR: Plasma current request not met

n=1 ~
* RWM B! threshold 30G (6B/B, 90§ . :
(0] [ ]
0.67%) < ok unstable RWM NSTX
. . . . . F‘ : :
* ~58% within 20 t,, of disruption time TN S \ ________________ 137722 3
(t,, =5 ms) el 0 14o1ozj
18 0.57 0.58 0.59 0.60
L I — S Time (S)
" RWM events 18 Disruption
12 .
0 in DECAF 16 =RWM
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= o] 14
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o N HH TR g =LoQ
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Time before DIS (t/x,) 4
RWM: RWM event warning 2 1
.o M m |
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14 12

LOQ: Low edge g warning Time before DIS (t/t,,)
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Initial DECAF analysis finding common disruption event chains,
giving new insight

e Earlier RWM events not * |dentifying common chains of
false positives events can provide insight into how
. to cue avoidance systems
— cause large decreases in B, and
stored energy with subsequent — 5 (out of theoretically 56) two-event
recovery (minor disruptions) combinations followed 77% of RWM cases

(that occurred within 20t of DIS)

135131

§ 3)
qi 4t > vsc >> bRP > 30.8%
3 | > VsC >> WPC > 19.2%
G 60 ¥ M RWM > PRP >> VsC > 11.5%
g S S e OS> w >
—g:;a 22 I > PR >> WPC > 7.7%

0.0 0.2 0.4 0.6 0.8 1.0

. 23.1%
Time (s) Other
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DECAF now incorporates a reduced kinetic MHD stability
model for global MHD

Toroidal
Projection of Trapped Direction
lon Trajectories e L

MISK code
e Solves for
Taesoy | RWM growth
| rate
e Wk is solved
by using f
from the drift
kinetic
equation

D. Pace et al., Physics Today 68, 34 (2015)]

Precession Drift ~ Plasma Rotation

Rotational
resonance effect

[J. Berkery et al., Phys. Rev.
Lett. 104, 035003 (2010)]

@NST)(.U EPS 2017 — Characterization and Forecasting of Global and Tearing Stability — J.W. Berkery June 26-30, 2017



MISK calculations validated against unstable experimental

plasmas; reproduce approach towards marginal stability
6 0.5
| f NSTX s
2 - unstable P o
2 0.0» ............................................................................... ,w
?& - stable T
3 f
B © 05 :
. . tMIS:K éltRWMi 0 _t MISK o | tRWM ; :
043 0.46 0.49 0.69 0.72 I '
6: 6: -1.07
g4 T 4 """"""" I
g . -15 I PR B | 1
L2320 Yam=5ms ~ 20 yaw=3ms ~ [ ~co -30 -20 -10 0
ENY: | (t-tw) /7,
0 0
[ . . | tRWN? ‘ tJ'«"lIS [ . . tMISIK X . tRIWM ]
0.58 0.61 0.64 0.56 0.59 0.62 .
Time (s) Time (s) [J. Berkery et al., Nucl. Fusion 55, 123007 (2015)]

e MISK calculations including kinetic effects have been tested against many
marginally stable NSTX experimental cases
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Physics understanding from previous research using
full model, used to construct a reduced kinetic model

* Goalisto forecasty in real-time using parameterized reduced models for §W terms
* Need 6W, as a function of the most important, real-time measurable quantities

ST ~ L MISK? Calculations
(wp) + lwy — Vet + wWE

Benchmarked?®

Fluid termsl®  Kinetic effects': Collisionality> Rotation? Compared to
Experiments3#57.9

+ Energetic
Particles?

References Reduced

[1] B. Hu et al., Phys. Rev. Lett. 93, 105002 (2004)

[2] B. Hu et al., Phys. Plasmas 12, 057301 (2005) o o
[3]J. Berkery et al., Phys. Rev. Lett. 104, 035003 (2010) KI nEtlc
[4] ). Berkery et al., Phys. Plasmas 17, 082504 (2010)

[5] J. Berkery et al., Phys. Rev. Lett. 106, 075004 (2011) M Od e|
[6] H. Reimerdes et al., Phys. Rev. Lett. 106, 215002 (2011)

[7]1J. Berkery et al., Phys. Plasmas 21, 056112 (2014)

[8] J. Berkery et al., Phys. Plasmas 21, 052505 (2014) \
[9] S. Sabbagh APS invited (2014) 4 8 12 16 20
10] J. Berk tal., Nucl. Fusion 55, 123007 (2015

[ rr]wreer eryeta ucl. Fusion ( ) <WE> (kHZ)
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Goal is to forecast mode growth rate in real-time using
parameterized reduced models for W terms

* RWM dispersion relation
61 | with-wall limit
_ Growth rate  Fluid terms Kinetic effects
B limits 21} W
5 [ / no-wall lim\
0 ' ' ' ' '
2t with-wall li 1i'§ [B. Hu et al., Phys. Rev. Lett. 93, 105002 (2004)]
1 | i
W (p==--=-= 11 e Gaussian functions are used for
1t - 6 ‘ ‘ ‘ ‘
‘ ' Fesonances .
B! no-wall limif ] | Precession
—3 ' ' ' ' ' — Coefficients resonance
1.0 A ' ' selected to ) 41 Bounce
05 L fluid RWM gro _ reflect NSTX =75} resonances
growth ' experience ~© |t )
rate  OO[7777mmmTmmm et o e
(Vtw) -05F  ctabilized by kinetic effects | o f--"
1.0 . . . . , ' LA <v>= 1 kHz
00 02 04_06 08 1.0 1.2 0 4 8 12 16 20
Time (s) {wp) (kHz)
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DECAF contains modeled kinetic quantities
for generation of stability maps

* Stability diagram shows
Normalized growth rate vs. time trajectory of a discharge towards
unstable regions

1.0 I
| I
: CB = (BN _ BNno—waII)/
| | (Banh-waII - BNno-waII)
0.5 — | 3 _ | .
I [
I [ C
. | | _
| - |
? 0.0 T ~ 2F 0.6 |
! | 0.4 |1
I [
—~ |
-0.5 _ : \;/ 1|
[ : unstable
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_1.0 , | . | . | . [ 0 L] . | . | . | . | . ]
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 ) 10
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DECAF reduced kinetic model results initially tested on a
database of NSTX discharges with unstable RWMs

Normalized growth rate vs. time Predicted instability statistics (45 shots)

1.0

Instability
(7%) False <320 ms

0.5
i positives
before

Instability disruption
within 100 ms" (44%)
of minor

disruption

0.0}

VTw

—05]

84% of shots are predicted unstable

44% predicted unstable < 320 ms (approx.
60t,,) before current quench

33% predicted unstable within 100 ms of
a minor disruption

0 ; | ; | ; l ; | ;
~1.0 —0.8 —0.6 0.4 —0.2 0.0
Time before disruption (s)
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Reduced kinetic model distinguishes between stable and
unstable NSTX discharges

4 ————————— 1.0 — a
} Unstable cases
3t ] 05f
2
T | L.
= 2f 1 € 00f-mme----&
—~ | 1 © I
Y [
S~ E /
1f ~0.5 e/ e
§ 7
ot S Y ) —
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* If <wg>~ 0 warnings are
eliminated, 10/13, or 77%,
of stable cases are stable in
the model

* Model is successful in first
incarnation - development
continues to improve
forecasting performance

Tradeoff: missed vs. early
warnings
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Essential new step for DECAF analysis of general tokamak
data: Identification of rotating MHD (e.g. NTMs)

o Magnetic spectrogram of rotating MHD in NST
¢ |n|t|a| g0a|S Shot 138854 wB(w) spectrum peE o N

— Create portable code to oo fOrforoldal mode number: 12 3 4 5

L
identify existence of .0 2
rotating MHD modes ¥
. . 5 60 [
— Track characteristics F ]
that lead to disruption g 40 -
= e.g.rotation 20 .
bifurcation, mode lock o e Wi T
* Approach 7 -
— Apply FFT analysis to 25 == -
determine mode ol Bl n =1 mode frequency vs. time
frequency, bandwidth S linitial code)
evolution ]
. . . g 107
— Determine bifurcation £
and mode locking |
{?64 DEISE D.ESB D.Ifr'l) D.I?'2 D.I?'dl D.}'Eu- -D.?B

time (s)
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Many shots with rotating MHD (e.g. NTMs) examined for
NSTX and NSTX-U — two illustrated here

Magnetic spectrogram of rotating MHD mode locking termination

NSTX 138854 NSTX-U 204202
Shot 138854 wB(w) spectrum o B
for toroidal mode number: 1 2 3 4 5 0 Shot 204202, n= I ? 3 I
100_ " ..! "*r‘-' ';‘|I' L B r g"'.~"§"°.~f"| """"" |----_-D---h-| --------- ;
80 =
"
ug,. 40—_ - g
w 1 T
20 -
0
O NSTX “stable periods” — enhanced by high O NSTX-U: rotating MHD more common (so far,
elongation (k ~ 2.7), lithium wall conditioning lower (k ~ 2.3), no Li wall conditioning)
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Fast Fourier transforms used to find mode peak frequency
within a time interval

FFTs " 0Odd-n ~__ Signals

700 — : .
w5
500 | 1 ﬁ
wn 1]
£ 400 | S ol |
g 300 | o
Q
200 | & -5 |
100 |
0
140 ~ : : : . . : : -
100 | ] ﬁ 20
]
g 80 | S |
g 60 | o
Q
40 | = =2 |
m
20 -4 |
0

0 5 10 15 20 25 30 35 40 0.6760.6770.6780.6790.6800.681 0.6820.6830.684

frequency (kHz) V\ Even_n / time (s)

* Reveals potential issues handling multiple frequency peaks
* Now adding processing of toroidal array / n number discrimination
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The characterization algorithm shows that the expected
bifurcation and locking events can be found

* Algorithm written looks for a “quasi-steady state” period,
a potential bifurcation, and possible mode locking

odd-n peak frequencies o odd-n peak frequencies
10 . . . . . . . . . . .
Mode frequency | — cubic fit (11 pts) | [— cubicfit (11 pts) |
71 ]
/ NSTX shot 138854 AL NSTX-U shot 204202
8 | ] W,
6 |
— bifurcates -~ 5|
N |
I I
2 0 3
> / > 4
[ ] [¥)
g o 3|
= s 2t
2| 1
lock 0/
0 : - : - - -1 - - : : :
670 o071 072 073 074 075 0.76 0.71 0.72 0.73 0.74 0.75 0.76 0.77
time (s) time (s)
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DECAF rotating MHD analysis identifies the state of the modes

found (n =1)

Magnetic signal / analysis (mode locking / unlocking)

Frequency vs. time

_ e
N O

frequency (kHz)

n=1 |
mode

o b~ o

20
10

B (G)

-10
-20
-30

NSTX-U

204202 mode lock
0.68 0.70 0.72 0.74 0.76 0.78

t (s)

1
o N

DECAF mode status

1 = mode rotating
0=No | | L. 1.
mode
-1 = mode locked
.66 0.70 0.74 0.78

t (s)
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DECAF rotating MHD analysis identifies the state of the modes
found (n = 2)

Magnetic signal / analysis (mode present, not locked)

30 - - . 2 . . .
— Frequency vs. time DECAF mode status
I
= 20 | n=2
> 1 = Mode present
- mode
3 L
210 |
v
h ~
0 ' ' - - - 0 = No mode
066 068 070 072 074 076 078 0 [F-========mmmmmmmmm o]
Signal
30 2lgnal
20 |
10 | 1 I -1=Mode locked
O o0
o -10 |
20 |
, | 2 - - -
30
204202 ] 066 0.70 0.74 0.78
0.68 0.70 072 074 076 0.78 t (s)
NSTX-U £ (s)
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Summary and next steps

* The Disruption Event Characterization and Forecasting code (DECAF)

— Focuses on quantitative statistical characterization of the chains of events which
most often lead to disruption of plasmas

— The ultimate goal is to provide forecasts which integrate with a disruption
avoidance system and are utilized in real-time during a device's operation

* Reduced kinetic model for disruption avoidance is implemented

— Success rate is surprisingly high given its initial state and relative simplicity

Rotating MHD is ubiquitous; Identification is essential

— Characterization algorithm utilizes FFT, finds expected bifurcation and locking

* Next steps to the development and usage of DECAF include:

*This work supported

— Continued improvement of accuracy of event determination by the US DOE contracts
o . . DE-AC02-09CH11466,
— Significant expansion of events and event chains DE-FG02-99ER54524,
and DE-5C0016614

— Expansion of the dataset to multiple devices (including DIII-D., KSTAR)
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