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Outline

* The Disruption Event Characterization And Forecasting
(DECAF) code

— Contains various physical event modules with warning algorithms

* A reduced kinetic model for resistive wall mode stability

— Complex calculation reduced for speed, performs well

* Identification of rotating MHD

— Tracks characteristics that lead to disruption: rotation bifurcation,
mode lock
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Disruption event chain characterization capability started as
next step in disruption avoidance plan

A

> > Avoidance > >

@ger 74N

Disruption ve;jg
event
chain

5

Y

Plasma “Health”

7

Disruption

[DOE report on Transient events (2015)]

e Approach to disruption

prevention

— ldentify disruption event
chains and elements

— Predict events in disruption
chains

— Cues disruption avoidance
systems to break event chains

= Attack events at several places
with active control

— Builds upon both physics and
control successes of NSTX
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Disruption Event Characterization And Forecasting (DECAF)
code is structured to ease parallel development

Code control Physical event * Physical event modules
workbooks i modules i — Present grouping follows work of deVries
[P.C. de Vries et al., Nucl. Fusion 51, 053018
Density Limits (2011)]
Confinement — BUT, easily appended or altered
Vain data le> [ Technical issues * Warning algorithms
— Present approach follows
Tokamak [S.P. Gerhardt et al., Nucl. Fusion 53, 063021
dynamics (2013)]
— More flexible: arbitrary number of tests,
Output Power/current thresholds, and user-defined levels and warning
processing handling points

{ Mode stability D

\ RWM and tearing mode stability
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Several threshold tests are currently included in DECAF

Group Disruption chain event Points Test Criteria Test Thresholds | Points
Greenwald limit GWL| 3 Greenwald density limit [0.90,0.95,0.99] |[1,2,3]

NI Low density (error field)| LON | 3 Decrease in line densitylgl(}lzcnlg/s) too large|[-10.0,-20.0,-30.0]| [1,2,3]
Line density (107" cm”) too low [0.3,0.2,0.1] [1,2,3]

Axis position (m) [0.05,0.075,0.10] | [1,2,3]

Vertical stability control | VSC 5 Axis velocity (m/s) 3.93,6.54,9.01] |[1,2,3]

MS Excessive ZdZdt (m/s?) [0.20,0.41,0.84] |[1,2,3]
_ Resistive wall mode |RWM| 3 Bj=! lower component (G) too large [10,20,30] [1,2,3]
Low edge q LoG| 3 Safety factor ¢* too low (3.0,2.5,2.0] [1,2,3]

Safety factor qgs too low (3.0,2.5,2.0] [1,2,3]

Sawtooth SAW | 3 Safety factor ¢o too low [1.05,1.00,0.95] |[1,2,3]

High pressure peaking | PRP | 3 Excessive po/(p) [3.5,4.0,4.5] [1,2,3]
Plasma current request | [PR 3 1 — 1| /1 > [0.05,0.10,0.15] |[1,2,3]

Inner gap (m) too small [0.03,0.02,0.01] |[1,2,3]

1D Wall proximity control |WPC| 3 Outer gap (m) too small [0.03,0.02,0.01] |[1,2,3]
Upper gap (m) too small [0.03,0.02,0.01] |[1,2,3]

Bottom gap (m) too small [0.03,0.02,0.01] |[1,2,3]

PC |High heat/radiation load| HHL | 3 Radiated power fraction too high [0.2,0.3,0.4] [1,2,3]
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Example DECAF analysis on single NSTX discharge
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Example DECAF analysis on single NSTX discharge

0.10

005 |2 IIL * DECAF uses simple threshold tests and more
B . -
< sophisticated models to declare events
—0.05
o0 — Ex: RWM B,"=! threshold 30G (6B/B0 ~ 0.67%)
5 * Tests can be combined with “warning points”
w4
£, 11V v, S N v — Ex: VSC uses Z, dZ/dt, and ZdZ/dt
% 4 ! Axis position (m) [0.05,0.075,0.10] |[1,2,3]
Vertical stability control | VSC |5 Axis velocity (m/s) 3.93,6.54,9.01] |[1,2,3]
-8 Excessive ZdZdt (m/s?) [0.20,0.41,0.84] |[1,2,3]
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@NSTX-U IAEA Technical Meeting — Disruption event characterization and forecasting of stability for tokamaks — J.W. Berkery May 31, 2017 7




Initial DECAF results detects disruption chain events when

_applied to dedicated 45 shot NSTX RWM disruption database

90 F _
ot * RWM B,"=! threshold 30G (6B/B,~ 0.67%)
% 60F unstable RW NSTX P 0
: ] o . . . . :
TR S W R 137722 * 60% within 14 t,, of disruption time (t,, =5 ms)
R ok 140102 3
0.57 0.58 0.59 0.60 e 18 IPR: Plasma current request not met Disruption
Time(s) L 16 - RWM: RWM event warning
18 e 14 VSC: Vertical stability control
16 LOQ: Low edge q warning
14 RWM eventy 12
12 in DECAF g 10
8 10 S S 8
: = S e
: Iy 2 d
: I 1 m I
0
o 101N i 14 12 10 8 6 4 2 0
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@DNSTX-U IAEA Technical Meeting — Disruption event characterization and forecasting of stability for tokamaks — J.W. Berkery May 31, 2017



Initial DECAF analysis already finding common disruption event
chains, giving new insight

* Earlier RWM events not false positives  |dentifying common chains of events can

_ cause large decreases in B and stored provide insight to cue avoidance systems

energy with subsequent recovery (minor ~ — > (out of theoretically 56) two-event
disruptions) combinations followed 77% of RWM cases

(those that occurred within 14z, of DIS)

6 5 .135131 | |
20 1 ) STw OS> D s
0 . D> v > > wec > 192%
56 Y > w > w > us
§ 40 > WPC > > VSC > 7.7%
T_o” 0 ;owh > PR > > wec > 17%
S 0TTOETTT s 08 1w Other 23.1%

Time (s)
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Outline

* A reduced kinetic model for resistive wall mode stability

— Complex calculation reduced for speed, performs well
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Goal is to forecast mode growth rate in real-time using parameterized
reduced models for 8W terms

RWM dispersion relation

- (with-wall limit
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DECAF contains modeled kinetic quantities

for generation of stability maps
Normalized growth rate vs. time

* Stability diagram shows trajectory of
10 T T T T T T T T T ° .
f a discharge towards unstable regions
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DECAF reduced kinetic model results initially tested on a database
of NSTX discharges with unstable RWMs

Normalized growth rate vs. time Predicted instability statistics (45 shots)
1.0

* 44% predicted
unstable < 320

0.5} Instability
ms (a PProx. (7%) False
601, ) before positives < 320ms
. w before
- 0.0 current quench Instability disruption
* 33% predicted within 100 ms " (44%)
unstable within of minor

_0.5 | . .
100 ms of a disruption

minor disruption

.0' l l l .
~1.0 —0.8 —0.6 0.4 —0.2 0.0
Time before disruption (s)
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Reduced kinetic model distinguishes between stable and unstable
NSTX discharges

* If <w>~ 0 warnings are eliminated,

y! 10/13, or 77%, of stable cases are stable

N in the model

 Model is successful in first incarnation -
development continues to improve

05|

| } Unstable cases
\

B l-a 0.0
-

—0.5 R L2~

-1.0 . . . . .
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3. :
/\_\,2- b l§~ 0.0} == == — - — - =
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Outline

* Identification of rotating MHD

— Tracks characteristics that lead to disruption: rotation bifurcation,
mode lock
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Essential new step for DECAF analysis of general tokamak data:
Identification of rotating MHD (e.g. NTMs)

e |nitial goals Magnetic spectrogram of rotating MHD in NSTX
— Create portable code to e R RS O NSTX “stable
identify existence of L | | : periods” —
rotating MHD modes g1 SN e " hanced by high
. . "‘; 50.{ ‘ \Il [' ‘j | ‘,.A.‘ /”_ ennance y Ig
— Track characteristics that A 1 U : elongation (k ~
lead to disruption E B s o ~2.7), lithium wall
= e.g. rotation bifurcation, i | M ] conditioning
mode lock ° 2 ga---0 i :
" Approach ________ TR v, 8@ NSTX-U:rotating
25 == | ' ' | — MHD more
— Apply FFT analysis to ol JJ|l| h=1mode frequency common (lower K
determine mode frequency, g ~ 2.3, no lithium)
bandwidth evolution z \
— Determine bifurcation and N i |1/ P i vttt -
mode locking | U _____ bifurcatjon ™ 4 kHz
0.64 0.66 0.68 0.?I;me {S;}.}Q 0.74 0.76 0.78
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DECAF rotating MHD analysis identifies the state of the modes found

Signals FFTs

700
20 0dd-n s0| Odd-n
10 500
ED: 0 42400 .
ST g 300 Fast Fourier transforms
20 . used to find mode peak
30 . mode Iock‘ . f . h .
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DECAF rotating MHD analysis identifies the state of the modes found

Frequency vs. time

Odd-n

DECAF mode status
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The characterization algorithm shows that the expected bifurcation
and locking events can be found

e Algorithm written looks for a “quasi-steady state” period, a
potential bifurcation, and possible mode locking

odd-n peak frequencies _odd-n peak frequencies

10 . . . 8 :
Mode | —  cubic fit (11 pts)| \ — cubic fit (11 pts)‘
 frequency NSTX shot 138854 ENASE NSTX-U shot 204202 |
8 | | W

bifurcates

3 3
% 6| / )
> > 40
(W] [ )
o T 3|
4 S
e = 2|
2| 1
lock 0
0 ; - - - - -1 . . . . .
0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.71 072 0.73 0.74 0.75 0.76 0.77

time (s) time (s)
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Conclusions

 The DECAF code can characterize chains of events leading
to disruption

— Expanding set of modules and warnings used to analyze data sets

* A reduced kinetic model for resistive wall mode stability

— Complex calculation reduced for speed, performs well

 Algorithm for identifying rotating MHD can find frequency,
bifurcation points, locking times
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Backup
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DECAF contains modeled quantities for stability estimation

Modeled estimates for NSTX no-wall limit DECAF
| Internalinductance Composite no-wall limit model 7
Pressure peaking 5t
5 [~ Aspect ratio ’ DECAF replicates
i 4; | published NSTX By, £ 4}
] no-wall model .
3 | B 7
5 NSTX 138556 2
3 Above no-wall x>; ' ‘& " ‘ 3
2 T fimit o i oo | DECAFsW _
HIN | TR R e | nowallmodel 5
5 | e * | DeoNrwis 2
! results
3 | Below DCON \ i I
0.0 0.2 0.4 0.6 0.8 1.0 1.2 -3 - ‘ ‘ - ‘
Time (s) 0.0 02 04 06 08 1.0 1.2

_ Time (s)
[J.W. Berkery et al., Nucl. Fusion 55, 123007 (2015)]
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DCON confirms NSTX-U above the no-wall limit;
NSTX-based model gives good estimate
204118

(April 2016)

NSTX-U H-mode discharges: 204112

5 Composite no-wall limit model

Composite no-wall limit model

3 3
B} DCON § 1 B} DCON B
Z‘zg ........... Abgve..ng .................................................................................. Z‘zf ........... Above.-no--
o ‘ ° 7= l | limit ‘/’ ‘w ]
; ' % Po
3 ‘l’ Below % | 3 Be:wk o
0.4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2
Time (s) Time (s)

* NSTX no-wall limit model ([J.W. Berkery et al., Nucl. Fusion 55, 123007 (2015)]) includes
internal inductance, pressure peaking, and aspect ratio, predicts NSTX-U DCON no-wall limit
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