

'Multicolor' Soft X-ray Detector Sensitivities and Optimization

Kevin Tritz ktritz@pppl.gov

D. Stutman, L. Delgado-Aparicio, M. Finkenthal The Johns Hopkins University, Baltimore, Maryland 21218

Tritz HTPD08

ABSTRACT

'Multicolor' Soft X-ray (SXR) arrays have been used recently on the National Spherical Torus Experiment (NSTX) to provide fast (<1ms) measurements of electron temperature (T_e) perturbations. This system consists of three banks of detectors tangentially viewing the same plasma volume through a set of beryllium filters. By comparing the ratios of SXR intensity and emissivity, temperature information can be extracted from the signals which are functions of T_e, n_e, and impurity concentration. The present system relies on clean plasmas restricted to small concentrations of low-Z impurities for calculation of $T_e(r,t)$. Using the CHIANTI spectral code, one can add impurity line emission using measurements and estimates to expand the capabilities of the fast T_e measurement. The sensitivity of the calculation to impurities is a function of T_e and filter transmission. It will be shown that by optimizing the combination of filters, 'multicolor' SXR measurements can provide fast, robust T_e profile measurements while demonstrating both sensitivity and immunity to impurities.

Optimization of 'multicolor' filters can maximize sensitivity to changes in electron temperature while minimizing sensitivity to uncertainties in impurity concentrations.

- "Multicolor" filters simultaneously samples same plasma volume
- Provides fast T_e(R) via spectral fitting and normalization to Thomson profiles

Filters Provide Coarse Sub-sampling of SXR Spectrum

- CHIANTI X-ray spectral code computes line and continuum spectra
- Ratios of signals with different filters affected by T_e and impurities

• Assume plasma emission dominated by continuum radiation:

$$\frac{dP_x}{dhv} \sim \frac{1}{\sqrt{T_e(\text{keV})}} \gamma(T_e, Z) Z_{eff} n_e^2 \exp\left(-\frac{hv}{T_e}\right)$$

- Ratio of measured SXR power depends on T_e and cutoff energy, E_c

Ratio =
$$R = \frac{P_1}{P_2} = \exp\left(\frac{-\Delta E_c}{T_e}\right)$$

• Normalize ratio to Multi-point Thomson Scattering (MPTS), use SXR ratios to propagate ΔT_e in time

- 'Giant' ELMs induce cold pulse propagation from edge to core in ~few ms
- Fast T_e(R,t) from SXR system provides measure of high perturbed χ_e

- Internal reconnection event causes fast redistribution of T_e
- Crash and peaking of T_e profile confirmed by MPTS system

• Isolate and identify SXR contributions using linearized emission:

Change in measured emission expressed as linear change in n_e, T_e, c_i

$$\Delta \varepsilon = \Delta n_e \frac{\partial \varepsilon}{\partial n_e} + \Delta T_e \frac{\partial \varepsilon}{\partial T_e} + \sum_{Z_i} \Delta c_i \frac{\partial \varepsilon}{\partial c_i}$$
$$\frac{\Delta \varepsilon}{\varepsilon} = \frac{2\Delta n_e}{n_e} + \Delta T_e \frac{\varepsilon'}{\varepsilon} + \sum_{Z_i} \Delta c_i \frac{\mathcal{N}_i}{\varepsilon}$$

• Filtered relative difference identifies sensitivity to ΔT_e , Δc_i

$$\left(\frac{\Delta \varepsilon_{f_1}}{\varepsilon_{f_1}} - \frac{\Delta \varepsilon_{f_2}}{\varepsilon_{f_2}}\right) = \Delta T_e \left(\frac{\varepsilon_{f_1}'}{\varepsilon_{f_1}} - \frac{\varepsilon_{f_2}'}{\varepsilon_{f_2}}\right) + \sum_{Z_i} \Delta c_i \left(\frac{\mathcal{N}_{i,f_1}}{\varepsilon_{f_1}} - \frac{\mathcal{N}_{i,f_2}}{\varepsilon_{f_2}}\right)$$

 T_e sensitivity c_i sensitivityfactor for f_1, f_2 factor for f_1, f_2

Pre-calculated Normalized Emission Functions, ${\mathcal N}$

Tritz HTPD08

SHOPKINS JERSITY 3D Lookup Table Uses Tricubic Splines for Accurate Interpolated Response and Gradients

- Tables precalculated for typical plasma impurities
- Tricubic splines use PSPLINE library, provides:

$$\mathcal{N}, \frac{\partial \mathcal{N}}{\partial T_e}, \frac{\partial \mathcal{N}}{\partial f_{thick}}, \frac{\partial^2 \mathcal{N}}{\partial f_{thick} \partial T_e}, \frac{\partial^2 \mathcal{N}}{\partial c_i \partial T_e}$$

Tritz HTPD08

T_e Sensitivity Maximizes Gradient Difference Weighted by Normalized SNR

$$\left(\frac{\Delta\varepsilon_{f_1}}{\varepsilon_{f_1}} - \frac{\Delta\varepsilon_{f_2}}{\varepsilon_{f_2}}\right) = \Delta T_e\left(\frac{\varepsilon_{f_1}'}{\varepsilon_{f_1}} - \frac{\varepsilon_{f_2}'}{\varepsilon_{f_2}}\right) + \sum_{Z_i} \Delta c_i\left(\frac{\mathcal{N}_{i,f_1}}{\varepsilon_{f_1}} - \frac{\mathcal{N}_{i,f_2}}{\varepsilon_{f_2}}\right)$$

- Identify regions of high gradient
- Emission measurement accuracy depends on SXR signal levels
- Use SNR weighted gradient values for filter optimization at given T_e

Tritz HTPD08

T_e Error Introduced from Impurity Sensitivities/Uncertainties

- T_e (0.5keV): Δ Te of 10% \rightarrow ~12% change in $\mathcal R$
- $\rm T_{e}~error~from~\Delta c_{C},~and~\Delta c_{O}:~~7~eV/\%$ and ~25 eV/%

Tritz HTPD08

OHNS HOPKINS

Filter Combination can Maximize Sensitivity to Impurities

Can Optimize Filters for Impurity Measurements

- Can use impurity sensitive differences to reduce error in calculated ΔTe

- *f*_{100µ}:*f*_{10µ} difference: good T_e sensitivity in 'clean' plasmas
 impurity sensitivity dominates in 'dirty' plasmas
- $f_{300\mu}$: $f_{100\mu}$ difference: much less sensitive to impurities

 $\mathcal{S}_{\mathrm{Te}}~\mathrm{(keV^{-1})}$

 $\mathcal{E}_{\rm C}$ (keV)

 \mathcal{E}_{O} (keV)

 \mathcal{S}_{C}

 S_{O}

 $\mathcal{S}_{\mathsf{Fe}}$

Differences Insensitive to Steady-State Impurity Ucertainties

- Factor ~x2 uncertainty in steady state impurity concentrations negligible effect on calculated temperature sensitivity
- High-Z impurities require detection, rough quantification

Thick Filters Provide Reduced Impurity Sensitivity

- Difference of thicker filters immune to low-Z steady state uncertainties
- High-Z uncertainties cause ΔT_e error for T_e > 1keV

- Incorporate 3D response tables into SXR fitting calculations
- Develop filter optimization algorithms to maximize T_e sensitivity/minimize errors from impurity uncertainties
- Specify requirements for low/high-Z impurity measurements

Conclusions

- 'Multicolor' SXR system demonstrates fast T_e (R,t) measurements
- Sensitivity lookup tables provide fast calculation, optimization of filters for $\rm T_e$ and impurity sensitivity
- TOSXR filters insensitive to steady-state impurity uncertainties
- Filter optimization can reduce sensitivity to uncertainties in Δc_i

Reprints