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There are many possible pathways
from ITER to commercial fusion power plant

FNSF = Fusion Nuclear Science Facility
CTF = Component Test Facility

=TT TN

FNSF/CTF . _
Blanket R&D, T self-sufficiency ng\;[vg:i 2 Ilgrr]]td

ITER /

Pilot Plant
Supporting Physics FNSF/CTF with power-plant like
and Techno]ogy maintenance, Qeng 21
* Core Physics \
* Materials R&D
Plasma Material Interface Qeng —_ 3_5 .

e.g. EU Demo

ST-FNSF Development Studies — IAEA Demo Workshop (J. Menard, October 2012) 2



This talk focuses on possible spherical tokamak
(ST) contributions ranging from FNSF to Pilot Plant

FNSF = Fusion Nuclear Science Facility
CTF = Component Test Facility

/ FNSF/CTF i i
ITER Blanket R&D, T self-sufficiency First of akind
Power Plant

Pilot Plant
Supporting Physics FNSF/CTF with power-plant like
and Techno|ogy maintenance, Qeng 21
* Core Physics

* Materials R&D
* Plasma Material Interface
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Successful operation of upgraded STs (NSTX-U/MAST-U)
could provide basis for design, operation of ST-based FNSF

* Fusion Nuclear Science Facility (FNSF) mission:

— Provide continuous fusion neutron source to develop knowledge-base for
materials and components, tritium fuel cycle, power extraction

* FNSF - CTF would complement ITER path to DEMO

Fluence: 1 MW-y/m2 6 MW-y/m? M ‘ | £
Pulse-length: <2 wks 2 wks 4 | geEle .
Duty factor: < 10% 30% > 6 MW-y/m?2 L '
-------------------------------------------------------- = 5
' . Months
| Prereq- FNSF CTF ; 50%
|| it Q=0.01-3 =) Q~35| |
: |_R&D - | - First
' ' DEMO
1| Accouy; Q=10 Lo:;’pﬁ'se ITERBA |!
i | panying ITER 2 + | DEMORS&D |!
' Tokamaks ITER :
e e S S -
0.1 MW-y/m? 0.3 MW-y/m?
400 s 3000 s th
2 50, 6o M. Peng et al., IEEE/NPSS Paper S04A-2 - 24th SOFE Conf. (2011)

« Studying wide range of ST-FNSF configurations to identify
advantageous features, incorporate into improved ST design

* Investigating performance vs. device size
— Require: W > 1 MW/m?2, test area = 10 m2, volume = 5 m3

M. Abdou et al. Fus. Technol. 29 (1996) 1
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* Physics basis for operating points
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NSTX-U will access next factor of 2 increase in performance

to reduce extrapolation to ST-based FNSF/CTF/Pilot

o 2

Parameter SF (l:JiSelr?geNFua(z:Ii?ﬁ; Pilot Plant
Major Radius R, [m] 1.3 16-2.2
Aspect Ratio R,/ a >1.5 >1.7
Plasma Current [MA] 1 2 4-10 11 -18
Toroidal Field [T] 0.5 1 2-3 24-3
Auxiliary Power [MW] <8 <19* 22 -45 50 -85
P/R [MW/m] 10 20 30-60 70-90
P/S [MW/m?] 0.2 0.4 06-1.2 0.7-0.9
Fusion Gain Q 1-2 2-10

* Includes 4MW of high-harmonic fast-wave (HHFW) heating power

« Achievable confinement

Key issues to * Non-inductive ramp-up and sustainment
resolve for FNSF * Divertor solutions for mitigating high heat flux
« Radiation-tolerant magnets

@ NSTX-U
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ST-FNSF operating point of A=1.7, 1. = 0.5, and k=3
chosen to be at/near values anticipated for NSTX-U
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Most probable NSTX thermal * NSTX A=1.7, |; = 0.5 plasmas can

pressure peaking factor ~1.8 operate stably at x ~ 2.8

— If similar in NSTX-U/FNSF - full — Expect to improve n=0 control in NSTX-U
non-inductive |; ~ 0.5 (BS + NBI) > anticipate k~3 possible in NSTX-U/FNSF
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ST-FNSF operating point of fgcenwaig = 0.8, Hggy ,=1.2
chosen to be at/near values anticipated for NSTX-U

14T "1 T
. Hogy» ~ 1.2 has been accessed for
12 | a range of Greenwald fractions
— However, much more research needs to
H 1.0 I be carried out in NSTX-U to determine if
98 i HH=1.2 can be achieved reliably
0.8 |
o6 —
0.4 0.6 0.8 1.0 1.2 * Also need to assess feasibility
Greenwald Fraction of routine access to Hgg, , ~ 1.2
14 ' ' ], — atx~3in NSTX-U
1.2} - |
H.. 1.0} '
98 0 8: * Note: there is sufficient shaping

: margin to reduce k to 2.7-2.9 for
0.6L FNS mission, but Hgg, , ~ 1 would

20 22 24 26 28 3.0 require much higher P, (~1.8%)
Elongation
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NSTX disruptivity data informs FNSF
operating point with respect to global stability

log,,(disruptivity [s7]):

* Increased disruptivity for g* < 2.7
— Significantly increased for g* < 2.5

« Lower disruptivity for 3, = 4-6
compared to lower B

— Higher B, increases fgg, broadens J
profile, elevates q,,

— Operation above no-wall limit aided by:
* NBI co-rotation
* Close-fitting conducting wall
 Active error-field and RWM control

« Strong shaping also important
— S=(gs Ip/aBy
— S > 30 provides strongest stabilization
— S > 22-25 good stability
— S < 22 unfavorable

Gerhardt
IAEA FEC EX/9-3
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Outline

Performance vs. device size
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Increased device size provides modest increase in stability,
but significantly increases tritium consumption

Scan R =1m - 2.2m (smallest FNSF - pilot plant with Q,, ~ 1)

Fixed average neutron wall loading = 1IMW/m?

B =3T, A=1.7, =3, Hyg = 1.2, f5ccnwaiq = 0-8

100% non-inductive: fgg = 75-85% + NNBI-CD (E\g=0.5MeV JT60-SA design)

204
T~ B [%] : | |
sl —— 500 i Electric power used%/
E 'F’W 400} ——
r- 300
S —— — — — 3 Fusion power [MW] /
> By 200 ]
3 : - 100}
2} e 0 NBI power [MW]
Q 1 1 1 1 1 1 1 1 1
1/ 1 1.3 1.6 1.9 2.2
T S T R P R [m]

R [m]

« Larger R lowers B & By, increases g* | |+ Q=1 - 3, P, = 60MW - 300MW

- Comparable/higher B; and By - 5x increase in T consumption
values already sustained in NSTX
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In addition to neutron wall loading and tritium breeding,
FNSF study also tracking overall electrical efficiency: Q.4

o - Electricity produced Ty (M P +P +P, + Ppump)
eng .. -
Electricity consumed P,
+ I:)pump + Psub + Pcoils + F)control
T aux
o < Nl QM +1+5/Q+5P /1 Py)
eng
5(1+ nauxQ I:)extra / Pfus)
T = thermal conversion efficiency
n..x = injected power wall plug efficiency
Note: blanket and auxiliary heating Q = fusion power / auxiliary power
gain largely determine Q4 P, = neutron power from fusion
. . _ P, = alpha power from fusion
.IT\I/I\IS_FlaisumptlonS (from Pilot study): P.ux = injected power (heat + CD + control)
) Pn - 0.03xP Poump = cCoOolant pumping power
pump — Y- th Peub = subsystems power
*Psub * Peontrot = 0.04%Py, _ Peois = Ppower lost in coils (Cu)
* Naux = 0.4 (presently unrealistically high) Peontrol = POWer used in plasma or plant control
* Nep = lepRoNe/Pep = 0.3 x 102°A/Wm? that is not included in Py
For more details see J. Menard, et al., Nucl. Fusion 51 (2011) 103014 Pextra - Ppump N PSUb N PCOHS N Pcontrol
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High performance scenarios can access increased neutron
wall loading and engineering gain > 1 for sufficiently large R

* Decrease B = 3T = 2.6T, increase Hgg = 1.2 2> 1.5
* FIX By =06, By =35%, q* = 2.5, f5eenwag Varies: 0.66 to 0.47

1.6 |

14 _-1Qr1o

1.2 L7 _
I:)electric produced ’f’ Qeng (nth 045)

= 1.0
Qeng Piecric CONSUMed P

0.8 - Qg (N = 0.30)
0.6 '

0.4 :
0.2

Note: Outboard PF coils 0 L L L L
are superconducting 1.0 1.3 1.6 1.9 2.2

R [m]

*Size scan: Q increases from 3 (R=1m) to 14 (R=2.2m)
*Average neutron wall loading increases from 1.8 to 3 MW/m? (not shown)
*Smallest ST for Q,,, ~ 1 is R=1.6m -> requires very efficient blankets
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* Tritium breeding ratio calculations
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Cost of tritium and need to demonstrate T self-sufficiency
motivate analysis of tritium breeding ratio (TBR)

« Example costs of T w/o breeding at $0.1B/kg for R=1 - 1.6m
— FNS mission: 1IMWy/m? $0.33B > $0.9B
— Component testing: 6MWy/m2  $2B - $5.4B

* Implications:
— TBR << 1 likely affordable for FNS mission with R ~ 1m
— Component testing arguably requires TBR approaching 1 for all R

« Performing initial analysis of R=1.6m FNSF using conformal
and straight blankets, ARIES-ST neutron source profiles:

ST-FNSF Development Studies — IAEA Demo Workshop (J. Menard, October 2012)
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R=1.6m TBR calculations highlight importance of
shells, penetrations, and top/bottom blankets

Extended + 3cm thick Extended conformal + 3cm shell + NBI
conformal blanket stabilizing shell NBI penetration at midplane

\

Stabilizing
shell

— TBR =1.02
TBR =1.07 10 NBI penetrations
Extended Straight blanket
conformal blanket straight blanket Straight blanket with flat top

TBR = 1.046

TBR = 10| TBR = 08| |TBR 1047|

ST-FNSF Development Studies — IAEA Demo Workshop (J. Menard, October 2012) 17
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» Divertor poloidal field coll layout and design

ST-FNSF Development Studies — IAEA Demo Workshop (J. Menard, October 2012)

18



FNSF center-stack can build upon NSTX-U design
and is incorporating NSTX stability results

*Like NSTX-U, use TF wedge segments (but brazed/pressed-fit together)
— Coolant paths: gun-drilled holes or NSTX-U-like grooves in wedge + welded tube
*Bitter-plate divertor PF magnets in ends of TF enable high triangularity
—NSTX data: High ¢ > 0.55 and shaping S = qgslp/aB; > 25 minimizes disruptivity

— Neutronics: MgO insulation can withstand lifetime (6 FPY) radiation dose
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Bitter colil insert for divertor colils in ends of TF

Insulator

Glidcop
plates
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Neutronics analysis indicates organic
Insulator for divertor PF coils unacceptable

Dose Results

PF Coil Composition, per T. Brown

(in”*3) %
water 5017 20
copper 17059 68
insulator 1254 5
hardware 1756 7
Total 25087 100

Insulator (cyanate ester / epoxy blend)
placed at corner of PF coil to calculate peak dose

Peak dose to insulator =3 x 10" rad @ 1 FPY

=1.8x 102 rad @ 6 FPY
>> 2 x 101 rad limit

3-D Model

Replace inner PF coil every 24 days (not practical).

Is ceramic insulator more radiation resistant?

ST-FNSF Development Studies — IAEA Demo Workshop (J. Menard, October 2012)
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MgO insulation appears to have good
radiation resistance for divertor PF colls

Sheath Pipe Ceramic
% | |

« UW analysis of divertor PFs
— 1.8x10%2 rad = 1.8x1010 Gy at
6FPY for P;,, = 160MW
* Pilot mission for R=1.6m:

— P, = 420MW vs. 160MW >
2.6x higher 2> 4.7x101° Gy

Fig. 3 Cross section of MIC

Table 1: Comparison of radiation resistant

i L — Even for Pilot mission, dose is
Insulation |Epoxy |Polyimide |[MgO . . 11
< IIm
Resistant |[>107 Gy |>10° Gy |>10!! Gy limit of 10 Gy

« Limiting factor may be Cu

R&D of a Septum Magnet Using MIC coil ) .
 Need to analyze CS lifetime

Kuanjun Fan I’A), Hiroshi Matsumoto A), Koji Ishii A), Noriyuki Matsumoto B)

e i (40 * Reuvisit option for multi-turn
UINEC Token TF and small OH solenoid

Proceedings of the 5th Annual Meeting of Particle Accelerator Society of Japan
and the 33rd Linear Accelerator Meeting in Japan (August 6-8, 2008, Higashihiroshima, Japan)
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Power exhaust calculations
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Divertor PF coil configurations identified to achieve

high & while maintaining peak divertor heat flux < 10MW/m?

N

Field-line angle
of incidence at
strike-point =1

Conventional snowflake

* Flux expansion = 15-25, §, ~ 0.55 * Flux expansion = 40-60, 9, ~ 0.62

* 1/sin(Bp56) = 2-3 * 1/sin(Bp ) = 1-1.5

« Detachment, pumping questionable  Good detachment (NSTX data) and
— Future: assess long-leg, V-shape divertor (JA) cryo-pumping (NSTX-U modeling)

« Will also test liquid metal PFCs in NSTX-U for power-handling, surface replenishment

Jaworski - IAEA FEC EX/P5-31

ST-FNSF Development Studies — IAEA Demo Workshop (J. Menard, October 2012)
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Parameters and profiles for conventional divertor
(using simple exponential heat-flux profile in R=1.6m ST-FNSF)

Z[m]

‘ i:exp = (IRBP)lmidpllane I (RBP)ldivertor .

-2.6 ﬂ' 35¢ | E
A 30 ! =
A 25~ ! =

28011 20 | E

15 i 3
10 =

-3.0/ i 55 : _ =
y 0t . L " . . E|

_3.2; ya /1 0.8 1.2 1.4 6 1.8

34; \\ \ VTN otal field-line angle of incidence [Degre

-9. - oy \ 6 T T T T T

: A 5 “—Strike point radius
: ‘ 4
3.6 | - 3 1
: | 2 |
I N ; 1
-38 L L L DRSNS 0
08 10 12 l14 16 18 20 -1 ‘ . ‘ ‘
R [m] 1.1 1.2 1.3 1.4
Divert{”' heat flux Peak Pheat (1'frad) 1:obd Sir"(epol)
8r 1 ‘ ] €ak (. qiv ®
67 : 2'ﬂ:Rstrike 1Eexp 7“q-mid |\Idiv
‘“§ o | ] * Preat = 115MW, f,,i=0.8, f,,;=0.8, sin(6,,) = 0.39
= | | i I:\)strike = 1'16m’ fexp = 22’ ?"q-mid =2'7mm’ Ndiv= 2
2r .
B [ NSTX-U simulations find q, at pump entrance
58 44 A48 A4 A& A8 5D should_be 2 1-2MW/m? for efficient pumping 2>
R [m] guesstimate Ry, ance ~ 1.3M for R=1.6m ST-FNSF
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Parameters and profiles for snowflake divertor
(using simple exponential heat-flux profile in R=1.6m ST-FNSF)

Z [m]

fexp = (IRBP)Imidpllane I (RBI?)ldivertor .

2.2 T - _ .
I\ -
HL 40t : E
-2.4 I I 302_ : —2
iy 20 | .
-2.6%""‘. 105 | o E
/ 0E L , , R — 3
2.8] 0.8 1.0 1.2 1. 1.6 1.8 2.0
30l Total field-line angle of |nc:|dence [Degr
s 5E E
I N | «+—Strike point radlus 3
I ! =
3.2} 3c | =
- 2 |
-3.4[ i L 15 L
08 10 12 |14 16 18 20 0t | | | , ,
IR [m] 1.0 1.1 1.2 1.3
7 Dlvert:or heat flux Peak g Pheat (1-frag) foba SIN(0,0))
i L-div =
6 : f 2'ﬂ:Rstrike 1Eexp 7“q-mid |\Idiv
NE [ B _ _ . _
S af | : * Preat = 115MW, f,,=0.8, f,,,=0.8, sin(0,,,) = 0.87
= - - - -
20 ! . I:\)strike 1.05m, fexp 50, ?"q-mid =2.7mm, Ndiv =2
of =
. | [ . | .
08 1.0 12 14 16 18 20 — Snowflake would also want divertor cryo-plenum
R [m] entrance radius R.pyance ~ 1.3m for R=1.6m ST-FNSF
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* Maintenance strategies

ST-FNSF Develo pment Studies — IAEA Demo Worksho p (J. Menard , October 2012 )

27



Flexible and efficient in-vessel access important for testing,
replacing, improving components, maximizing availability

Several maintenance approaches under consideration:

* Vertically remove entire blanket * Translate blanket segments
and/or center-stack radially then vertically
— Better for full blanket replacement? — Better for more frequent blanket

‘ I '/l ‘-

w1

module replacement and/or repair?

Radial ports
for divertor
maintenance

/ or pumping \

* May be possible to combine features of both approaches

ST-FNSF Development Studies — IAEA Demo Workshop (J. Menard, October 2012)
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Assembly and maintenance schemes
with snowflake divertor and vertical ports

Full Blanket Assembly Removed Centerstack Assembly Removed
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Possible divertor module maintenance scheme using radial
Installation and vertical translation through vertical ports
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Large cylindrical vessel of R=1.6m FNSF could be used for
PMI R&D (hot walls, Super-X?), other blanket configurations

NOTE: TBR values do
not include stabilizing
shells or penetrations

Straight blanket

Straight blanket
with flat top

TBR =1.047
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Summary

Present STs (NSTX/MAST) providing preliminary physics
basis for ST-FNSF performance studies
— Upgraded devices will provide more extensive and definitive basis

Neutron wall loading of 1IMW/m? feasible for range of major
radii for B and Hgyg values at/near values already achieved

— High wall loading and/or pilot-level performance require By ~ 6 and Hgyg
~ 1.5 which are at/near maximum values attained in present STs

TBR ~ 1 possible if top/bottom neutron losses are minimized
Divertor PF colls in ends of TF bundle enable high 5, shaping

Conventional and snowflake divertors investigated, PF colls
iIncorporated to reduce peak heat flux < 10MW/m?

Vertical maintenance strategies for either full and/or toroidally
segmented blankets being investigated

ST-FNSF Development Studies — IAEA Demo Workshop (J. Menard, October 2012) 32



Future work
(a highly incomplete list!)

Physics basis for operating points

— Perform sensitivity study of achievable performance vs. baseline configuration
assumptions: A, k, Hgg, 5, ST vs. tokamak t¢ scaling

— TRANSP calculations of NBI heating, current drive, neutron production

Performance vs. device size

— Could/should overall machine configuration change at smaller R?

— Example questions: could/should vessel take more load?, is there sufficient
shielding for divertor PF coils at smaller R?

Tritium breeding ratio calculations
— Extend calculations to smaller R, include 3D effects and final machine layout

Divertor poloidal field colil layout and design
— Assess radiation induced conductivity (RIC) in ceramic insulators

Power exhaust calculations
— Perform pumping and detachment calculations, include Super-X divertor

Maintenance strategies
— Assess space/lifting requirements above machine for vertical maintenance

ST-FNSF Development Studies — IAEA Demo Workshop (J. Menard, October 2012)
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Backup
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R=1.6 m ST FNSF with JT-60SA NNBI system
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