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NSTX investigates low collisionality
toroidal plasmas at low aspect ratio

@NsTX

Achieved Parameters
Aspectratio A 1.27

Elongation « 2.6
Triangularity & 0.8
Major radius R, 0.85m

Plasma Current |, 1.5MA
Toroidal Field B, 0.6T

Solenoid flux 0.7Vs
Pulse Length 1.1s
Te, Ti 1-4keV
Auxiliary heating & current drive:
RF (30MHZz) 6 MW
4 CHI 0.4MA
Experiments started in Sep. 1999 NBI (100kV) 7 MW
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Motivation

@NsTX

* Internal kink can limit B in highest-B+ shots of NSTX

— Highest B+ shots typically have high I./aB; and low g,

— 1/1 modes often saturate in amplitude
e Cyclic sawtooth oscillations are rare at high-f3

— Modes degrade fast-ion & thermal confinement + rotation
— Effect of mode ranges from benign to disruptive

« Want to improve understanding of:

— Possible saturation mechanisms for 1/1 mode
 Mechanism must be strong during non-linear phase of evolution
« Fast ion, sheared flow, island pressure, and diamagnetic effects

— Plasma rotation flattening and damping caused by mode
* Important for shots that disrupt due to presence of 1/1 mode
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Highest 3 shots obtained despite large 1/1 modes

o Sawtooth activity rare at high B 4
— Rotating 1/1, usually = f roll-over

* In highest (3 shots, 3 saturates

30+

or actually rises during 1/1 activity =+

10

» 1/1 saturates or decays at high
20

* 3> 1.2-1.4 xonsetf L
— Onset By = 4.2 - 4.5 ~n=1ideal limit ©

— These shots reach By =5.5—-6 ;g

» Synergistic effects may aid high f 0]

— 1/1 mode flattens core p and J 1.5

/ 108989, 1.2MA, 7MW
; 108103, 1.0MA, 5SMW ]

Neutron
L Rate (10%/s)

» Large fast ion diffusion or loss

— H-mode onset broadens p and J
— Broad p, J + rotation stabilizing

How do the modes saturate?
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Saturation physics



Fast ion stabilization likely not aiding saturation

@NsTX
_ Mode Be(Gauss)M

In(NPA Flux/Energy1/2)
(stel 1em-2ev-3/2 1)

B,=35% f‘zl burst )  Neutron rate drops significantly at
- 20 ¢ saturation . .
¥ | 108989 " i ——mode onset and during saturation
g : shown
g ‘°‘ above
- é « NPA shows most energetic ions are
g i —rapidly depleted during mode growth
ey W « Fast ion population from 20-80keV
" e reduced by factor of 3-5 during
o | AR T saturation phase = likely reduction
T sbasse ] In possible stabilizing effect of
) trapped fast ions
. « Could reduced core B, keep plasma
12 frosetem 0 . near marginal stability = saturation?

Energy (keV) 6
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Saturation mechanisms studied with M3D code
(W. Park, et al., Nucl. Fus. 43 (2003) 483.)
@NsTX

« Simulations = at least partial reconnection should occur
—> saturation process will be acting on subsequent non-linear state

Saturated state with higher p in island Possible mechanisms:

(1) Sufficient source rate and viscosity to
maintain sheared flow with island
* Requires slow reconnection rate
* Robust, experimentally possible

(2) Following reconnection, island develops
with p highest inside island
* Mechanism is robust, not easily obtained

(3) Fast particles, 2-fluid - being studied now

B-field lines
Tiso-surface * Fast particles initially lost/diffused at onset
Density contours - Diamagnetic flow potentially important

e Rotational shear and 2-fluid effects appear most relevant
,
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Rotation effects are strong in NSTX plasmas
QNSTX

Centrifugal effects evid\ent In n (R) profiles:

25F

Solid curves:
MHD model n(y,R)

Dashed curves:
N.(y) = density w/0 rotation

201

151

1.0

0.5f

0.0 '

A MHD model n (v,R)
15 can match n, data
) A A DR AN : /// //,”/— ] \\\\ Ne(W)

04 06 08 10 12 14 0.4 0.6 0.8 1.0 1.2 14
Radius (m) Radius (m)
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MHD force balance model of density asymmetry

. . . @NsTX
 Total force balance in multi-species plasma =

J x B =2V (nT(v)) - Zs MgNQy(w)? V(R?/2)
B e this equation = 0 has a solution:
ns(w,R) = Ng(w) exp( U(y) (R?/Ry2-1) ),
U(y) = Pqo(w) / Pr(v)
Po(w) = 2 MmN (y) Qu(w)2Re2/ 2  Centrifugal pressure

P.(y) = 2 Ny(y)T<(w) Thermal pressure

ZS N (w)Z,=0 Charge neutrality
e Charge neutrality = all species have same exponential form —

— Test consistency: can this model fit measured n, T, Tc, Qyc, N ?
* Use neoclassical Q; from TRANSP/NCLASS (= € )
° Treat fast ions as haVing I:)fast = Pfast(\ll)v Qq)fast = Qd)fast(\V)

e Solutions in collisionless limit will have ®=®(y,0)

J.E. Menard, FEC2004, Nov. 3, 2004




I\/IBD: Sheared-flow reduces growth rate by factor of 2-3

@NsTX
» Possible because v ear ~ Qrotation CAN b Of >y, 0o

M3D
simulations

* In experiment, the NBI power is held roughly fixed

e [n M3D, with a fixed momentum source rate,
the v, and p profiles flatten inside the island, —
reconnection still occurs (saturated state rare)

J.E. Menard, FEC2004, Nov. 3, 2004




Rotation data = shear-flow correlates with saturation

QNSTX
BT < 230p BT <31% NOTE: Carbon f, data is 20ms average >> Ty, 1/f¢

1o ‘ ‘ ‘ 4 | B:+=23% - Rotation flattens, broadens, collapses
, /////’ I, (MA) \8 2ol . . _
0.5 ¢ N\ ! k t=190ms :

Pyg/10 (MW) //-/ B t=210ms

L b 15 ..“"I'l'-

o0 w L TR § e
B (%) (kHz) “F '-
: sf. 10kHz )

0.8 1.0 1.2 1.4 1.6

__ Br = 31% - Rotation flattens,

|
: o t=190ms 1
20} <% t=210ms -
[ t=230ms ]
.I: (R t) 15F M% t=250ms 3
rot J F :
/ v % -

101 -
(kHz) 7ty ;
5F E
0: . N
0.8 1.0 1.6

Radlus (m)

Favorable g or Q, profile slows mode growth?
Enough rotation retained for later saturation?

*(W/O MSE) I | I

0.10 0.15 0.20 0.25 0.30

Time (s) 11
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SXR inversion aids analysis of mode evolution
@NsTX
* Perturb EFIT equilibrium helical flux with m/n = 1/1 8,  reconstructed Sxr emission

. . ) . NSTX shot 108103 at t=230ms
— Reconstruct total emission as function of total helical flux

I
Line-integrated SXR data for I
NSTX shot 108103 at t=230ms 10l 4

= 21%

Island model %
fits data well

0.5r

151
10¢

SXR Data ==

Contours from SXR data

Chord index

0.0r

-0.5¢

SIMULATED SXR data from

equilibrium with m/n=1/1 island 10k
25 ,
Island Model| ===~ / .
20; ; \\«\/'/‘\V/\/‘\\\‘\\\‘\\\‘\\\‘\\\
Eit error < 6% ’ W\/ 02 04 06 08 10 12 14 16
3 150 ‘ ‘ b 7M|dpla‘ne e‘mls‘smn‘pro‘fllei
N - - = n
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w=0.3 SN AN SN ) 0
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Mode periods (f=15.4kHz) 02 04 06 O-S(n}jo 12 14 16
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SXR data consistent with incomplete reconnection

@NSTX

Z(m)

Br < 31% island grows slowly (t=1ms), saturates with r,_; ~ 0.5

t=227ms t=229ms t=230ms

Z (m)
AN 7

0.

2.0r :
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J.E. Menard, FEC2004, Nov. 3, 2004
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Kinetic profiles inconsistent with p peaking inside island
— ANSTX

/ Core clearly displaced by island

E 227ms '

N Flat-spot in T, observed
é\lnterpreted as island O-point

Electron pressure evolution similar
Density profile is nearly flat

P. highest in displaced core
Vp, enhanced by mode near q=1

T, (keV)

15 210ms '

[ 230ms

[ 250ms

[ 270ms

: Time average T, has local minimum in
Island region during saturation
f108103 Max. p; in island region unlikely

0.4 0.6 0.8
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Non-linear diamagnetic effects may aid 1/1 saturation

@NsTX

* High B = increased ./ w, oc ; A 6,/a «mm A=Rya=plasmaaspect ratio
d;=ion skin depth, a = minor radius

 Displacement of plasma core by island can
enhance local pressure gradient and 100
magnetic shear in reconnection region: ;

— Quasilinear stability criterion with @., = 0: m—— 0'8;

ROGERS, B. and ZAKHAROQV, L., Phys. Plasmas 2 (1995) 3420. < 0.6 r
awnTa > 2/ (YoTa/T)? + (70)2(P2 + 5d2) /2. 04l
&-:1+2X2’ @’:14‘6}{2 1—&./2 A 02

— Yo = ideal MHD linear growth rate O'%io‘ |

— @ = ion diamagnetic frequency

— &, =radial displacement of magnetic axis
— A, = ideal mode layer width 1.07
— pg = ion-sound Larmor radius :
— d, = collisionless electron skin depth ,
— § =normalized shear = r dg/dr 706"

0.8]

~
o

« Significant non-linear stabilization possible »04r

— Inclusion of electron diamagnetism important ﬁ

— Shear parameter s ~ 0.15 allows &; / ry—; =~ 0.5

J.E. Menard, FEC2004, Nov. 3, 2004



Flow damping physics



Operational and diagnostic upgrades have improved
understanding of role of 1/1 mode in § and Q, collapse

DNsTX

This run year:

« Early H-mode + highk <2.6t0 ol
raise g and lengthen pulse 5f

e Achieved long 1.2MA pulses
with peak B; <40% in recent

experiments (34% TRANSP)  ,8F
— Highest B “confirmed” by 20}
kinetics thus far (112600) =0

— Improved resolution (in R, t) 5[
charge exchange diagnostic !

— Internal RWM sensors
 Why does collapse occur? |

J.E. Menard,

o

0.3F

1, 1p [MA]

o —— 112600 |

1

00 01 02 03

FEC2004, Nov. 3, 2004
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SXR indicates coupled 1/1 and 2/1 modes

during disruption of this high-§3 discharge
@NsTX

) ) Reconstructed SXR emission
Line-average SXR data fluctuation for NSTX shot 112600 at t=567ms
NSTX shot 112600 at t=567ms ARRRARE RARE RRRRRARRRRRRRAR

1/1 mode + SXR
locate q=1 position

10+
x
S
E 05+
g
&)
2/1 mode _
E o0
N
Edge mode
05
SIMULATED SXR data fluctuation from
equilibrium with m/n=1/1 island
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Midplane emission profile
10f T

0.8} /—\

0.6 R PN

04l ]

0.0 0.5 1.0 1.5 2.0 25 3.0 02f | :
Mode periods (f=10.1kHz) 0.0 !

02 04 06 08 10 12 1.4 16
R (m) 18
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emission fluctuation
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Rotation profile decays with 2/1
Island locked to local fluid €,

QNSTX

Shot 112600 wB(w) spectrum - - - - |:]

ShOt 1 12600 carbon frotatlon for toroidal mode number:
—== — 35 | R AR R e o SR
- t=550ms | ; 1 2/2 mode _
30 t=555ms - 301 growth Core n=1 becomes |
C t=560ms i measurable at edge |
25[ 1=565ms ' 2/1 mode g
t=570ms Qincreases
N 20 t=575ms -
=S S N N N (. N -SSR W
15 N
10} n
5¢
ot . . . L oo Noed
0.8 1.0 1.2 1.4

Radius (m)

2/1 mode phase-locks with core 1/1 mode,
and core mode apparently flattens rotation profile...

J.E. Menard, FEC2004, Nov. 3, 2004
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Core plasma rotation flattening consistent
with combined torques of 1/1 and 2/1 modes

QNSTX

o0Q 10 0Q) )
Torque balance = pRP—L_R*=Z| pu,r—2L |+ T, +T., (0N island only) = S
ot ror|” " or TV TR ’
\ / >T .
SXR = 0¥, =bmn damping
min=if mode .| min=2/ mode o | 1 o™\’
N AR R RN AR AR W s T ""(T)E (Q _Qm,n) r
NTV 1 ¢ mode
1/1 mode o ; B
1.0+ 1.0 3
25 Tdamps’ng
05t dost /)
on
—_— —;j (F‘_"j |
E 00 Ho0r | A cluE 15 ot ]
<,
. 1 0.5
112600
1.0f 1.0 0 t=0.556-0.566
-0.5
-1.57\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\7-1.57\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\7 0.8 0.8 1 1.1 1.2 1.3 1.4 1.5 1.6
0.2 04 06 O.SR‘“;.O 1.2 14 16 0.2 04 06 O.SR(m)LO 1.2 1.4 1.6 R (m)

Total rotation damping rate Tg,,,ing IS SUM Of multiple effects:
— Neoclassical Toroidal Viscous (NTV) differential torque from 1/1 mode
— Entrainment of plasma mass inside 2/1 island (T, small)

— Fluid viscosity outside islands
20
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New in-vessel magnetic sensor arrays are used to detect
low-f modes during rotation decay of high-$3 discharges

@NsTX
e Greatly improved detection of f < 2kHz modes with n <3

» 24 each large-area internal Bg,
B_ coils commissioned this run
— Mounted on passive stabilizers

— Symmetric about midplane

* Internal sensor signal greater
than external by factor of 5

e Internal sensors reveal clear
up/down mode asymmetry

21
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Internal sensors indicate unstable RWM not

present in early phase of rotation collapse
@NsTX

Shot 112600 carbon f,otat,o,,

I._Ipper pﬂlﬂldal array mcdes f-::-r shﬂt '1125["]

I 1=550ms | ] 150 n = 1 internal i
30 t=555ms . -
C t=560ms ] g
25 t=565ms [\ - L : _ E
: S \ : Alla§ed n=1
20 t=575ms - = rotating mode
¥ . : ]
~ 15F 3 _ \
- ] 0 Do e i G N I
2 [1] =i S-S | e S . 0.52 0.54 0.56 0.58 0.60
C ] Time (s)
5 - E _ Lower pnlmdal array modes for shot 112600 _
f : 1208 N = 1 internal ' E
oL . /. : : : —_ 100f B
0.8 1.0 1.2 1.4 16 % | X
/ Radius (m) g B0 E
Mode f, at 565ms g .
¢ E
Edge rotation increases after mode onset 2} | :
ok Hﬁll'!e'.l.!"""'".‘."-*..-"f' A Mnuuﬂ. L dlkia 3
.52 54 o 0. E-E'E : CIEE/ 060
- ’) Ime |s
RWM unstable once f, i, < 2-3kHz (?)
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Summary

@NsTX

Highest B, shots in NSTX can be limited by 1/1 modes
Modes often saturated for t >> 1, high-p sawteeth rare
Modes degrade fast-ion & thermal confinement + rotation

Sheared flow and diamagnetic effects most likely suspects
In explaining non-linear mode saturation

Core Q, flattening consistent with 1/1 mode NTV damping

Coupling to other modes at high B can cause global
rotation collapse and lead to plasma disruption

23
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