

Internal kink mode dynamics in high-β NSTX plasmas

J.E. Menard¹, R.E. Bell¹, E.D. Fredrickson¹, D.A. Gates¹, S.M. Kaye¹, B.P. LeBlanc¹, S.S. Medley¹, W. Park¹, S.A. Sabbagh², A. Sontag², D. Stutman³, K. Tritz³, W. Zhu², and the NSTX Research Team.

> ¹Princeton Plasma Physics Laboratory, Princeton, NJ, USA ²Columbia University, New York, NY, USA ³Johns Hopkins University, Baltimore, MD, USA

20th IAEA Fusion Energy Conference

1 – 6 November 2004 Vilamoura, Portugal

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL **PSI SNL UC Davis UC** Irvine UCLA UCSD **U** Marvland **U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo JAERI loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP. Jülich** IPP, Garching U Quebec

NSTX investigates low collisionality toroidal plasmas at low aspect ratio

Achieved Parameters

Aspect ratio A	1.27
Elongation k	2.6
Triangularity δ	0.8
Major radius R ₀	0.85m
Plasma Current I _p	1.5MA
Toroidal Field B_{T0}	0.6T
Solenoid flux	0.7Vs
Pulse Length	1.1s
Te, Ti	1-4keV

Auxiliary heating & current drive:RF (30MHz)6 MWCHI0.4MANBI (100kV)7 MW

Motivation

- Internal kink can limit β in highest- β_T shots of NSTX
 - Highest β_T shots typically have high I_P/aB_T and low q_0
 - 1/1 modes often saturate in amplitude
 - Cyclic sawtooth oscillations are rare at high- β
 - Modes degrade fast-ion & thermal confinement + rotation
 - Effect of mode ranges from benign to disruptive
- Want to improve understanding of:
 - Possible saturation mechanisms for 1/1 mode
 - Mechanism must be strong during non-linear phase of evolution
 - Fast ion, sheared flow, island pressure, and diamagnetic effects
 - Plasma rotation flattening and damping caused by mode
 - Important for shots that disrupt due to presence of 1/1 mode

Highest β shots obtained despite large 1/1 modes

Saturation physics

Fast ion stabilization likely not aiding saturation

 Neutron rate drops significantly at mode onset and during saturation

- NPA shows most energetic ions are rapidly depleted during mode growth
- Fast ion population from 20-80keV reduced by factor of 3-5 during
 saturation phase ⇒ likely reduction in possible stabilizing effect of trapped fast ions
- Could reduced core β_P keep plasma near marginal stability \Rightarrow saturation?

Saturation mechanisms studied with M3D code

(W. Park, et al., Nucl. Fus. 43 (2003) 483.)

Simulations ⇒ at least partial reconnection should occur

 \Rightarrow saturation process will be acting on subsequent non-linear state

Saturated state with higher p in island

Possible mechanisms:

(1) Sufficient source rate and viscosity to *maintain sheared flow with island*

- Requires slow reconnection rate
- Robust, experimentally possible
- (2) Following reconnection, island develops with *p* highest inside island
 - Mechanism is robust, not easily obtained

(3) Fast particles, 2-fluid - being studied now

- Fast particles initially lost/diffused at onset
- Diamagnetic flow potentially important

Rotational shear and 2-fluid effects appear most relevant

J.E. Menard, FEC2004, Nov. 3, 2004

MHD force balance model of density asymmetry • Total force balance in multi-species plasma \Rightarrow $\mathbf{J} \times \mathbf{B} = \sum_{s} \nabla (\mathbf{n}_{s} \mathsf{T}_{s}(\psi)) - \sum_{s} \mathbf{m}_{s} \mathbf{n}_{s} \Omega_{\phi s}(\psi)^{2} \nabla (\mathsf{R}^{2}/2)$ **B** • this equation = 0 has a solution: $n_{s}(\psi,R) = N_{s}(\psi) \exp(U(\psi)(R^{2}/R_{0}^{2}-1))$ $U(\psi) = P_{O}(\psi) / P_{T}(\psi)$ $\mathsf{P}_{\Omega}(\psi) = \sum_{s} \mathsf{m}_{s} \mathsf{N}_{s}(\psi) \,\Omega_{\phi s}(\psi)^{2} \,\mathsf{R}_{0}^{2} / 2$ **Centrifugal pressure** $\mathbf{P}_{\mathsf{T}}(\boldsymbol{\psi}) = \sum_{s} \mathbf{N}_{s}(\boldsymbol{\psi}) \mathbf{T}_{s}(\boldsymbol{\psi})$ **Thermal pressure** $\sum_{s} N_{s}(\psi) Z_{s} = 0$ **Charge neutrality**

Charge neutrality ⇒ all species have same exponential form –

Test consistency: can this model fit measured n_{e} , T_{e} , T_{C} , $\Omega_{\phi C}$, n_{C} ?

- Use neoclassical $\Omega_{\phi D}$ from TRANSP/NCLASS ($\approx \Omega_{\phi C}$)
- Treat fast ions as having $P_{fast} = P_{fast}(\psi)$, $\Omega_{\phi fast} = \Omega_{\phi fast}(\psi)$

• Solutions in collisionless limit will have $\Phi = \Phi(\psi, \theta)$

M3D: Sheared-flow reduces growth rate by factor of 2-3

• Possible because $\gamma_{shear} \sim \Omega_{rotation}$ can be of > γ_{linear}

Simulated SXR signals

- In experiment, the NBI power is held roughly fixed
- In M3D, with a <u>fixed momentum source rate</u>, the ν_φ and *p* profiles <u>flatten</u> inside the island, reconnection <u>still</u> occurs (saturated state rare)

Ρ

Rotation data \Rightarrow shear-flow correlates with saturation

J.E. Menard, FEC2004, Nov. 3, 2004

SXR inversion aids analysis of mode evolution

J.E. Menard, FEC2004, Nov. 3, 2004

SXR data consistent with incomplete reconnection

J.E. Menard, FEC2004, Nov. 3, 2004

Kinetic profiles *inconsistent* with *p* peaking inside island

Non-linear diamagnetic effects may aid 1/1 saturation

- High $\beta \Rightarrow$ increased $\omega_{*i} / \omega_A \propto \beta_i A \delta_i / a \longleftarrow A \otimes$
- Displacement of plasma core by island can enhance local pressure gradient and magnetic shear in reconnection region:
 - Quasilinear stability criterion with $\omega_{*e} = 0$:

ROGERS, B. and ZAKHAROV, L., Phys. Plasmas 2 (1995) 3420.

$$\alpha \omega_{*i} \tau_A > 2\sqrt{(\gamma_0 \tau_A/\bar{q}')^2 + (\bar{q}'q')^2(\rho_s^2 + 5d_e^2)/2}.$$

$$\alpha = 1 + 2\chi^2 \qquad \bar{q}' = 1 + 6\chi^2 \qquad \chi = \xi_0 / 2\pi \lambda_h$$

- $-\gamma_0$ = ideal MHD linear growth rate
- ω_{*_i} = ion diamagnetic frequency
- $-\xi_0$ = radial displacement of magnetic axis
- $-\lambda_h$ = ideal mode layer width
- $-\rho_s$ = ion-sound Larmor radius
- d_e = collisionless electron skin depth
- \hat{s} = normalized shear = r dq/dr

• Significant non-linear stabilization possible

- Inclusion of electron diamagnetism important
- Shear parameter $\hat{s} \approx 0.15$ allows $\xi_0 / r_{q=1} \approx 0.5$

J.E. Menard, FEC2004, Nov. 3, 2004

DNSTX

Flow damping physics

Operational and diagnostic upgrades have improved understanding of role of 1/1 mode in β and Ω_{ϕ} collapse

This run year:

- Early H-mode + high $\kappa \le 2.6$ to raise q and lengthen pulse
- Achieved long 1.2MA pulses with **peak** $\beta_T \leq 40\%$ in recent experiments (34% TRANSP)
 - Highest β "confirmed" by kinetics thus far (112600)
 - Improved resolution (in R, t) charge exchange diagnostic
 - Internal RWM sensors
- Why does collapse occur?

SXR indicates coupled 1/1 and 2/1 modes during disruption of this high-β discharge

J.E. Menard, FEC2004, Nov. 3, 2004

Rotation profile decays with 2/1 island locked to local fluid Ω_{ϕ}

2/1 mode phase-locks with core 1/1 mode, and core mode apparently flattens rotation profile...

J.E. Menard, FEC2004, Nov. 3, 2004

- Total rotation damping rate *T_{damping}* is sum of multiple effects:
 - Neoclassical Toroidal Viscous (NTV) differential torque from 1/1 mode
 - Entrainment of plasma mass inside 2/1 island (T_{EM} small)
 - Fluid viscosity outside islands

New in-vessel magnetic sensor arrays are used to detect low-f modes during rotation decay of high- β discharges

• Greatly improved detection of f < 2kHz modes with $n \le 3$

- 24 each large-area internal B_R , B_Z coils commissioned this run
 - Mounted on passive stabilizers
 - Symmetric about midplane
 - Internal sensor signal greater than external by factor of 5
 - Internal sensors reveal clear up/down mode asymmetry

Internal sensors indicate unstable RWM not present in early phase of rotation collapse

Summary

- Highest β_T shots in NSTX can be limited by 1/1 modes
- Modes often saturated for $\tau \gg \tau_{growth}$, high- β sawteeth rare
- Modes degrade fast-ion & thermal confinement + rotation
- Sheared flow and diamagnetic effects most likely suspects in explaining non-linear mode saturation
- Core Ω_{ϕ} flattening consistent with 1/1 mode NTV damping
- Coupling to other modes at high β can cause global rotation collapse and lead to plasma disruption