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NSTX investigates low collisionality
toroidal plasmas at low aspect ratio

J.E. Menard, FEC2004, Nov. 3, 2004
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Achieved Parameters
Aspect ratio A 1.27
Elongation κ 2.6
Triangularity δ 0.8
Major radius R0 0.85m
Plasma Current Ip 1.5MA
Toroidal Field BT0 0.6T
Solenoid flux 0.7Vs
Pulse Length 1.1s
Te, Ti 1-4keV

Auxiliary heating & current drive:
RF (30MHz) 6 MW
CHI 0.4MA
NBI (100kV) 7 MWExperiments started in Sep. 1999



Motivation 
• Internal kink can limit β in highest-βT shots of NSTX

– Highest βT shots typically have high IP/aBT and low q0

– 1/1 modes often saturate in amplitude
• Cyclic sawtooth oscillations are rare at high-β

– Modes degrade fast-ion & thermal confinement + rotation
– Effect of mode ranges from benign to disruptive

• Want to improve understanding of:
– Possible saturation mechanisms for 1/1 mode

• Mechanism must be strong during non-linear phase of evolution
• Fast ion, sheared flow, island pressure, and diamagnetic effects

– Plasma rotation flattening and damping caused by mode
• Important for shots that disrupt due to presence of 1/1 mode

J.E. Menard, FEC2004, Nov. 3, 2004
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• Sawtooth activity rare at high β
– Rotating 1/1, usually ⇒ β roll-over

• In highest β shots, β saturates
or actually rises during 1/1 activity

• 1/1 saturates or decays at high β

• β → 1.2-1.4 × onset β
– Onset βN = 4.2 - 4.5 ≈ n=1 ideal limit
– These shots reach βN = 5.5 – 6

• Synergistic effects may aid high β
– 1/1 mode flattens core p and J

• Large fast ion diffusion or loss
– H-mode onset broadens p and J
– Broad p, J + rotation stabilizing

How do the modes saturate?

108989, 1.2MA, 7MW
108103, 1.0MA, 5MW

Neutron 
Rate (1014/s)

βT (%)
31%

35%

Mode Bθ (Gauss)

Highest β shots obtained despite large 1/1 modes

β=35% mode saturates

β=31% mode decays



Saturation physics

J.E. Menard, FEC2004, Nov. 3, 2004
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Fast ion stabilization likely not aiding saturation

J.E. Menard, FEC2004, Nov. 3, 2004
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• Neutron rate drops significantly at 
mode onset and during saturation

• NPA shows most energetic ions are 
rapidly depleted during mode growth 

• Fast ion population from 20-80keV 
reduced by factor of 3-5 during 
saturation phase ⇒ likely reduction 
in possible stabilizing effect of 
trapped fast ions

• Could reduced core βP keep plasma 
near marginal stability ⇒ saturation?
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Saturation mechanisms studied with M3D code
(W. Park, et al., Nucl. Fus. 43 (2003) 483.)

• Simulations ⇒ at least partial reconnection should occur 
⇒ saturation process will be acting on subsequent non-linear state

B-field lines
T iso-surface

Density contours

(1) Sufficient source rate and viscosity to 
maintain sheared flow with island
• Requires slow reconnection rate
• Robust, experimentally possible

(2) Following reconnection, island develops 
with p highest inside island
• Mechanism is robust, not easily obtained

(3) Fast particles, 2-fluid - being studied now
• Fast particles initially lost/diffused at onset
• Diamagnetic flow potentially important

• Rotational shear and 2-fluid effects appear most relevant

Possible mechanisms:Saturated state with higher p in island



Rotation effects are strong in NSTX plasmas

J.E. Menard, FEC2004, Nov. 3, 2004
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Ne(ψ)
nD

107540 at t=333ms

Solid curves:
MHD model ns(ψ,R)

Dashed curves:
Ns(ψ) ≡ density w/o rotation

MS = vφ / vsound = 0.4-0.8,     MA = vφ / vA = 0.2-0.4
Centrifugal effects evident in ne(R) profiles:
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•Total force balance in multi-species plasma ⇒
J × B = Σs ∇ (nsTs(ψ)) - Σs msnsΩφs(ψ)2 ∇(R2/2)

B • this equation = 0 has a solution:
ns(ψ,R) = Ns(ψ) exp( U(ψ) (R2/R0

2-1) )
U(ψ) = PΩ(ψ) / PT(ψ)

PΩ(ψ) = Σs msNs(ψ) Ωφs(ψ)2 R0
2 / 2 Centrifugal pressure

PT(ψ) = Σs Ns(ψ)Ts(ψ) Thermal pressure

Σs Ns(ψ)Zs = 0 Charge neutrality
• Charge neutrality ⇒ all species have same exponential form

– Test consistency: can this model fit measured ne, Te, TC, ΩφC, nC ?
• Use neoclassical ΩφD from TRANSP/NCLASS ( ≈ ΩφC )
• Treat fast ions as having Pfast = Pfast(ψ), Ωφfast = Ωφfast(ψ)

• Solutions in collisionless limit will have Φ=Φ(ψ,θ)

MHD force balance model of density asymmetry



M3D: Sheared-flow reduces growth rate by factor of 2-3

• Possible because γshear ∼ Ωrotation can be of > γlinear

J.E. Menard, FEC2004, Nov. 3, 2004
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P

vφ

• In experiment, the NBI power is held roughly fixed
• In M3D, with a fixed momentum source rate,
the vφ and p profiles flatten inside the island,    
reconnection still occurs (saturated state rare)

MA = 0.3

0            1   

2

Time

Simulated SXR signals
M3D 

simulationsMA = 0

0               1
Time



Rotation data ⇒ shear-flow correlates with saturation

J.E. Menard, FEC2004, Nov. 3, 2004
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SXR DataSXR Data

Island ModelIsland Model
Fit error < 6%

rs = 0.43
w = 0.3
f   = 15.4 kHz

J.E. Menard, FEC2004, Nov. 3, 2004
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• Perturb EFIT equilibrium helical flux with m/n = 1/1 δψh
– Reconstruct total emission as function of total helical flux

Z

Line-integrated SXR data for
NSTX shot 108103 at t=230ms
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Reconstructed SXR emission
NSTX shot 108103 at t=230ms
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SXR data consistent with incomplete reconnection

J.E. Menard, FEC2004, Nov. 3, 2004
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Early growth phase
emission highest in displaced core

Reconstructed SXR emission
NSTX shot 108103 at t=230ms
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Reconstructed SXR emission
NSTX shot 108103 at t=245ms
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Saturated phase
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βT ≤ 31% island grows slowly (τ≈1ms), saturates with rq=1 ≈ 0.5



Kinetic profiles inconsistent with p peaking inside island
Te (keV)
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Core clearly displaced by island

Flat-spot in Te observed
Interpreted as island O-point

Electron pressure evolution similar
Density profile is nearly flat
pe highest in displaced core
∇pe enhanced by mode near q=1

Time average Ti has local minimum in 
island region during saturation
Max. pi in island region unlikely

J.E. Menard, FEC2004, Nov. 3, 2004
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Non-linear diamagnetic effects may aid 1/1 saturation

• Displacement of plasma core by island can 
enhance local pressure gradient and 
magnetic shear in reconnection region:

– Quasilinear stability criterion with ω*e = 0:
ROGERS, B. and ZAKHAROV, L., Phys. Plasmas 2 (1995) 3420.

– γ0 = ideal MHD linear growth rate
– ω*i = ion diamagnetic frequency
– ξ0 = radial displacement of magnetic axis
– λh = ideal mode layer width
– ρs = ion-sound Larmor radius
– de = collisionless electron skin depth
– s = normalized shear = r dq/dr

• Significant non-linear stabilization possible
– Inclusion of electron diamagnetism important
– Shear parameter s ≈ 0.15 allows ξ0 / rq=1 ≈ 0.5 
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• High β ⇒ increased ω*i / ωA ∝ βi A δi /a A = R0/a = plasma aspect ratio
δi = ion skin depth, a = minor radius



Flow damping physics

J.E. Menard, FEC2004, Nov. 3, 2004
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Operational and diagnostic upgrades have improved 
understanding of role of 1/1 mode in β and Ωφ collapse

J.E. Menard, FEC2004, Nov. 3, 2004
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This run year:
• Early H-mode + high κ ≤ 2.6 to 

raise q and lengthen pulse

• Achieved long 1.2MA pulses 
with peak βT ≤ 40% in recent 
experiments (34% TRANSP)

– Highest β “confirmed” by 
kinetics thus far (112600)

– Improved resolution (in R, t) 
charge exchange diagnostic

– Internal RWM sensors

• Why does collapse occur?
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SXR indicates coupled 1/1 and 2/1 modes 
during disruption of this high-β discharge

J.E. Menard, FEC2004, Nov. 3, 2004
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1/1 mode + SXR 
locate q=1 position

2/1 mode

Edge mode

Simulated line-average 
emission fluctuation 
from model 1/1 mode

Line-average SXR data fluctuation for
NSTX shot 112600 at t=567ms
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Rotation profile decays with 2/1 
island locked to local fluid Ωφ

1/1 mode

2/1 mode
growth Core n=1 becomes 

measurable at edge
2/1 mode
Ω increases

2/1

J.E. Menard, FEC2004, Nov. 3, 2004
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2/1 mode phase-locks with core 1/1 mode, 
and core mode apparently flattens rotation profile…



Core plasma rotation flattening consistent 
with combined torques of 1/1 and 2/1 modes
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J.E. Menard, FEC2004, Nov. 3, 2004
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• Total rotation damping rate Tdamping is sum of multiple effects:
– Neoclassical Toroidal Viscous (NTV) differential torque from 1/1 mode 
– Entrainment of plasma mass inside 2/1 island (TEM small)
– Fluid viscosity outside islands



New in-vessel magnetic sensor arrays are used to detect 
low-f modes during rotation decay of high-β discharges

• Greatly improved detection of f < 2kHz modes with n ≤ 3

BR

BZ

• 24 each large-area internal BR, 
BZ coils commissioned this run
– Mounted on passive stabilizers

– Symmetric about midplane

• Internal sensor signal greater 
than external by factor of 5

• Internal sensors reveal clear 
up/down mode asymmetry

J.E. Menard, FEC2004, Nov. 3, 2004
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Internal sensors indicate unstable RWM not 
present in early phase of rotation collapse

J.E. Menard, FEC2004, Nov. 3, 2004
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Aliased n=1 
rotating mode

Mode fφ at 565ms

Edge rotation increases after mode onset

RWM unstable once frotation < 2-3kHz (?)

1/1 mode 2/1



Summary

• Highest βT shots in NSTX can be limited by 1/1 modes

• Modes often saturated for τ >> τgrowth, high-β sawteeth rare 

• Modes degrade fast-ion & thermal confinement + rotation

• Sheared flow and diamagnetic effects most likely suspects 
in explaining non-linear mode saturation

• Core Ωφ flattening consistent with 1/1 mode NTV damping

• Coupling to other modes at high β can cause global 
rotation collapse and lead to plasma disruption

J.E. Menard, FEC2004, Nov. 3, 2004
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