

transformer and the second sec

Wall Stabilized Operation in High Beta NSTX Plasmas

S. A. Sabbagh¹, A.C. Sontag¹, R. E. Bell², J. Bialek¹, D.A. Gates², A. H. Glasser³, B.P. LeBlanc², J.E. Menard², W. Zhu¹, M.G. Bell², T.M. Biewer², A. Bondeson⁴, C.E. Bush⁵, J.D. Callen⁶, M.S. Chu⁷, C. Hegna⁶, S. M. Kaye², L. L. Lao⁷, Y. Liu⁴, R. Maingi⁵, D. Mueller², K.C. Shaing⁶, D. Stutman⁸, K. Tritz⁸, C. Zhang⁹

> ¹Department of Applied Physics, Columbia University, New York, NY, USA ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA

³Los Alamos National Laboratory, Los Alamos, NM, USA
⁴Institute for Electromagnetic Field Theory, Chalmers U., Goteborg, Sweden
⁵Oak Ridge National Laboratory, Oak Ridge, TN, USA
⁶University of Wisconsin, Madison, WI, USA
⁷General Atomics, San Diego, CA, USA
⁸Johns Hopkins University, Baltimore, MD, USA
⁹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

20th IAEA Fusion Energy Conference

1-6 November 2004 Vilamoura, Portugal

Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC Irvine** UCLA UCSD U Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo JAERI loffe Inst TRINITI KBSI KAIST ENEA. Frascati CEA. Cadarache **IPP**, Jülich IPP. Garching U Quebec

Extra slides for poster follow

Evidence for resonance with AC error field observed

$$\frac{P-A \text{ finded resonance}}{(S_* v_* / (1 + md) + 1)\hat{\omega}_{AC}^2 + (s(1 - md) + \Omega_{\phi}^2) = 0}$$

"static error field" response

$$\frac{\text{New condition}}{\hat{\omega}_{AC}^2 - v_* (1 + md) / 2S_* = 0}$$

adifiad

Theory / experiment show

- AC frequency match may be responsible for mode trigger
- Mode rotates <u>counter</u> to plasma rotation
- n=1 phase velocity not constant due to error field
- Estimate of $\omega_{AC}/2\pi \sim 350 \text{ Hz}$ consistent with PF coil ripple
- Initial results quantitative comparison continues

RWM stabilization system being installed for 2005 run

- RWM sensor array used in 2004 experiments
- 6 B_r coils now installed on NSTX
 - Pre-programmed capability in 2005 for RFA suppression / MHD spectroscopy experiments
- 3-channel switching power amplifier (SPA) on-site
- Real-time mode detection and control algorithm development in 2005 for feedback experiments

Physics design (VALEN code)

Significant shift of peak pressure off-axis due to rotation

Toroidal Rotation Damping Torques

Resonant EM force on island (R. Fitzpatrick, et al.)

$$T_{\varphi EM_{err}} = \frac{r_s}{w\mu_0} \frac{n}{m} \left| \delta B_{r_island} \right| \left| \delta B_{r_error_field} \right| \times Fac_{shielding}$$
$$T_{\varphi EM_{wall}} = \frac{r_s}{w\mu_0} \frac{n}{m} \frac{(\omega \tau_w) \left[1 - (r_{s+}/r_w)^{2m} \right]}{1 + (\omega \tau_w)^2 \left[1 - (r_{s+}/r_w)^{2m} \right]^2} \left| \delta B_{r_island} \right|^2$$

Neoclassical toroidal viscosity (NTV) theory (K.C. Shaing et al.)

$$T_{NTV} = R \frac{\pi^{1/2} p_i}{v_{t_i}} \left(\Omega_{\phi} - \Omega_{\text{mode}}\right) \varepsilon^2 \sum_{m,n \neq 0} \left(\frac{\delta B_r^{mn}}{B_{\phi}}\right)^2 \frac{1.365n^2 q}{1.182 + 1.365|m - nq|}$$

dominant m:

$$T_{NTV} = R \frac{\pi^{1/2} p_i}{v_{t_i}} \left(\Omega_{\phi} - \Omega_{\text{mode}}\right) \varepsilon^2 n^2 q \left(\frac{\delta B_r}{B_{\phi}}\right)^2$$

~0