

transformer and the second sec

Wall Stabilized Operation in High Beta NSTX Plasmas

S. A. Sabbagh¹, A.C. Sontag¹, R. E. Bell², J. Bialek¹, D.A. Gates², A. H. Glasser³, B.P. LeBlanc², J.E. Menard², W. Zhu¹, M.G. Bell², T.M. Biewer², A. Bondeson⁴, C.E. Bush⁵, J.D. Callen⁶, M.S. Chu⁷, C. Hegna⁶, S. M. Kaye², L. L. Lao⁷, Y. Liu⁴, R. Maingi⁵, D. Mueller², K.C. Shaing⁶, D. Stutman⁸, K. Tritz⁸, C. Zhang⁹

> ¹Department of Applied Physics, Columbia University, New York, NY, USA ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA

³Los Alamos National Laboratory, Los Alamos, NM, USA
⁴Institute for Electromagnetic Field Theory, Chalmers U., Goteborg, Sweden
⁵Oak Ridge National Laboratory, Oak Ridge, TN, USA
⁶University of Wisconsin, Madison, WI, USA
⁷General Atomics, San Diego, CA, USA
⁸Johns Hopkins University, Baltimore, MD, USA
⁹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

20th IAEA Fusion Energy Conference

1-6 November 2004 Vilamoura, Portugal

Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC Irvine** UCLA UCSD U Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo JAERI loffe Inst TRINITI KBSI KAIST ENEA. Frascati CEA. Cadarache **IPP**, Jülich IPP. Garching U Quebec

<u>Wall stabilization physics understanding is key</u> to sustained plasma operation at maximum β

Theory provides framework for wall stabilization study

1.0

0.5

0.0

-0.5

-1.0

0.0

 $v_{*}=1/0$

stable

0.5

0.5

S

strength

node

This talk: Resistive Wall Mode physics

- RWM toroidal mode spectrum
- Critical rotation frequency, Ω_{crit}
- Toroidal rotation damping
- Resonant field amplification (RFA)

Theory

- Ideal MHD stability DCON (Glasser)
- Drift kinetic theory (Bondeson Chu)
- RWM dynamics (Fitzpatrick Aydemir)

$$\left[\left(\hat{\gamma} - i\hat{\Omega}_{\phi} \right)^{2} + \nu_{*} \left(\hat{\gamma} - i\hat{\Omega}_{\phi} \right) + (1 - s)(1 - md) \right] \left[S_{*} \hat{\gamma} + (1 + md) \right] = \left(1 - (md)^{2} \right)$$
plasma inertia dissipation mode strength \uparrow wall response wall/edge coupling $S_{*} \sim 1/\tau_{wall}$

Fitzpatrick-Aydemir (F-A)

stability curves

0.30

plasma rotation

10

Phys. Plasmas 9 (2002) 3459

ideal wall limit

wall

stabilized

no-wall limit

stable

1.5

Unstable RWM dynamics follow theory

- Unstable n=1-3 RWM observed
 - □ ideal no-wall unstable at high β_N
 - n > 1 theoretically less stable at low A
- F-A theory / experiment show
 - mode rotation can occur during growth
 - growth rate, rotation frequency ~ $1/\tau_{wall}$
 - << edge Ω_{ϕ} > 1 kHz
 - RWM phase velocity follows plasma flow
 - n=1 phase velocity not constant due to error field
- Low frequency tearing modes absent

Camera shows scale/asymmetry of theoretical RWM

Before RWM activity

(exterior view)

(interior view)

- Visible light emission is toroidally asymmetric during RWM
- DCON theory computation displays mode
 - uses experimental equilibrium reconstruction
 - □ includes n = 1 3 mode spectrum
 - uses relative amplitude / phase of n spectrum measured by RWM sensors

Soft X-ray emission shows toroidal asymmetry during RWM

Experimental Ω_{crit} follows Bondeson-Chu theory

Phys. Plasmas 8 (1996) 3013

- Experimental Ω_{crit}
 - □ stabilized profiles: $\beta > \beta_N^{no-wall}$ (DCON)
 - □ profiles not stabilized cannot maintain $\beta > \beta_N^{no-wall}$
 - □ regions separated by $\omega_{\phi}/\omega_{A} = 1/(4q^{2})$

Drift Kinetic Theory

- Trapped particle effects significantly weaken stabilizing ion Landau damping
- Toroidal inertia enhancement more important
 - Alfven wave dissipation yields $\Omega_{crit} = \omega_A/(4q^2)$

Ω_{crit} follows F-A theory with neoclassical viscosity

Plasma rotation damping described by NTV theory

- Plasma response to applied field from initial RWM stabilization coil pair
 AC and pulsed n = 1 field
- RFA increase consistent with DIII-D
- Stable RWM damping rate of 300s⁻¹ measured

Sensors Initial RWM stabilization coils

Completed coils will be used to suppress RFA, stabilize RWM, sustain high β

<u>Wall stabilization research at low aspect ratio</u> <u>illuminates key physics for general high β operation</u>

- Plasma $\beta_t = 39\%$, $\beta_N = 6.8$, $\beta_N/I_i = 11$ reached; $\beta_N/\beta_N^{no-wall} > 1.3$
- Unstable n = 1-3 RWMs measured (n > 1 prominent at low A)
- Critical rotation frequency ~ ω_A/q^2 strongly influenced by toroidal inertia enhancement (prominent at low A)
- Rapid, global plasma rotation damping mechanism associated with neoclassical toroidal viscosity
- Resonant field amplification of stable RWM increases with increasing β_N (similar to higher A)
- Evidence for AC error field resonance observed (see poster)
- Effect of rotation on equilibrium reconstruction evaluated (see poster)

Completed RWM active stabilization coil to be used for research in 2005

