

Recent Physics Results from the National Spherical Torus Experiment (NSTX)

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL **PPPL** PSI Princeton U **SNL** Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD U Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

IAEA 2006 - NSTX Overview – J. Menard

Jonathan Menard

For the NSTX Research Team

21st IAEA Fusion Energy Conference October 16 – 21, 2006 Chengdu, China

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAERI Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep

- Integrated High Performance
- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Energetic Particle Physics
- Plasma Start-up and Ramp-up

- Integrated High Performance
- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Energetic Particle Physics
- Plasma Start-up and Ramp-up

NSTX plasmas approach the normalized performance levels needed for a Spherical Torus Component Test Facility (ST-CTF)

MHD-induced NBICD diffusion may contribute to "hybrid" scenarios proposed for ITER

J. Menard, PRL 97, 095002 (2006)

- Integrated High Performance
- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Energetic Particle Physics
- Plasma Start-up and Ramp-up

New mode control system enables error field and RWM research

🕦 NSTX

- Dynamic error field correction (DEFC) increases pulse-length above no-wall limit
 - Maintains plasma rotation which stabilizes RWM

Low-frequency MHD spectroscopy used to diagnose stable RWM

- Toroidally propagating n = 1 fields used to examine resonant field amplification (RFA) of stable RWM
 - propagation frequency and direction scanned
 - RFA increases when applied field rotates with plasma flow
 - consistent with DIII-D results and theoretical expectations
- Single mode model of RWM fit to measured RFA data
 - peak in fit at 45 Hz in direction of plasma flow

A. Sontag – Oral EX/7-2Rb

Observed plasma rotation braking consistent with NTV theory

- <u>First</u> quantitative agreement using full *neoclassical toroidal viscosity* theory (NTV)
 - Due to plasma flow through non-axisymmetric field
 - Trapped particle effects, 3-D field spectrum important
- pressure-driven RFA increases damping at high-beta
 - Included in calculations
 - Based on applied field, or DCON computed mode spectrum
- Viable physics for simulations of plasma rotation in future devices (ITER, CTF, KSTAR)

Zhu, et al., PRL **96** (2006) 225002. Columbia U. thesis dissertation

11

RWM stabilized at ITER-relevant low rotation for ~ $90/\gamma_{RWM}$

Sabbagh, et al., PRL 97 (2006) 045004.

• Plasma rotation Ω_{ϕ} reduced by non-resonant n = 3magnetic braking

DNSTX

- Non-resonant braking to accurately determine RWM critical rotation
- First demonstration of low- Ω_{ϕ} RWM control at low A
 - Exceeds DCON $\beta_N^{\text{no-wall}}$ for n = 1 and n = 2
 - n = 2 RWM amplitude
 increases, mode remains
 stable while n = 1 stabilized
 - <u>Multi-mode</u> research connection to RWM stabilization in RFPs
 - n = 2 internal plasma mode seen in some cases

LOS Alamos MATIONAL LABORATORY EST. MAT

- Integrated High Performance
- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Energetic Particle Physics
- Plasma Start-up and Ramp-up

Dedicated H-mode confinement scaling experiments measure scaling trends that differ from high-A results

Weaker dependence on I_P : $\tau_{E-98y,2} \propto I_P^{0.93}$ $\tau_{E-NSTX} \propto I_P^{0.4}$

NSTX τ_E exhibits strong I_P scaling $\underline{at \ fixed \ q}$: $\tau_{E-98y,2} \propto I_P^{1.1}$ $\tau_{E-NSTX} \propto I_P^{1.3-1.5}$

NSTX Transport Physics: S. Kaye – Oral EX/8-6

NSTX

Thermal diffusivity profiles reveal source of confinement scalings

Electrons responsible for B_T dependence

lons responsible for I_P dependence

NSTX

Pellet-induced temperature perturbations show that electron transport response depends strongly on equilibrium conditions

2-color soft X-ray array diagnoses fast T_e and ∇T_e response to lithium pellet injection

- H-mode, monotonic q(ρ)
 - Exhibits very stiff profile behavior →
 - Critical T_e gradient

- L-mode, reversed shear
 - − Core T_e increases while edge T_e decreases →
 - No apparent critical temperature gradient

Stutman, et al., to be published in PoP

Turbulence measurements aiding in identification of possible causes of anomalous transport

- Integrated High Performance
- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Energetic Particle Physics
- Plasma Start-up and Ramp-up

Experiments utilizing advanced shape control and parametric scans find ELM stability sensitive function of edge parameters

• ELM type and plasma performance sensitive function of magnetic topology

- ELM type also depends on global β_N & pedestal electron collisionality
 - Predicted to impact pedestal J_{BS} , access to ballooning second stability
 - Recent results find Type V also accessible at low v_*^e via increased shaping

Blob dynamics measured with gas-puff-imaging (GPI) and edge probe are being systematically compared to 2D transport theory

- Bounds on GPI-inferred blob radial velocities roughly consistent with 2D theory
 - blobs speed up with collisionality Λ
 - low Λ , small blobs fastest
 - large Λ, large blobs fastest
 J. Myra Poster TH/P6-21

- Formation & dynamics of $n_{\rm e}$ holes & peaks being compared to theory

Divertor heat flux mitigation experiments achieved $5 \times$ reduction in peak heat flux while remaining compatible with H-mode

Initial Lithium Evaporator (LITER) experiments in H-mode exhibit improved particle pumping and energy confinement NSTX n_e

R. Majeski – Poster EX/P4-23

- Integrated High Performance
- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Energetic Particle Physics
- Plasma Start-up and Ramp-up

NSTX accesses ITER-relevant fast-ion phase-space island overlap regime with full diagnostic coverage

- **ITER** will operate in new, small ρ^* regime for fast ion transport
 - $k_{\perp} \rho \approx 1$ means "short" wavelength Alfvén modes
 - Fast ion transport expected from interaction of many modes
 - NSTX can study multi-mode regime while measuring MSE q profile
 - NSTX observes that multi-mode TAE bursts induce larger fast-ion losses than single-mode bursts:

S. Medley – Poster EX/P6-13

Reflectometry data reveals 3-wave coupling of distinct fast-ion instabilities for first time

 10^{0} (\mathbf{d}) $|\delta \phi|^2$ n=1 EPMs TAEs 10^{-2} n=2n=4 n=5 n=6 n=7 n=3 1010= 357 ms-8 10

100

freq (kHz)

150

• Low-f EPMs co-exist with mid-f TAE modes

Bi-coherence analysis reveals 3-wave coupling between 1 EPM and 2 TAE modes

50

N. Crocker, Phys. Rev. Lett. 97, 045002 (2006)

Large EPM →TAE phase locks to EPM

forming toroidally localized wave-packet

• In absence of EPM, TAE modes do not form toroidally localized wave-packets

Influence of toroidal localization of TAE mode energy on fast ion transport and EPM/TAE stability presently being investigated

200

UCLA

- Integrated High Performance
- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Energetic Particle Physics
- Plasma Start-up and Ramp-up

Coaxial Helicity Injection (CHI) has convincingly demonstrated the formation of closed poloidal flux at high plasma current

OD NSTX

Evidence for high-I_P flux closure:

- 1. I_P =160kA remains after CHI injector current $I_{CHI} \rightarrow 0$ at t=9ms
- 2. After t=9ms, plasma current decays away inductively

3. Once $I_{INJ} \rightarrow 0$, reconstructions track dynamics of detachment & decay $T_{IIME} = 9.003 \text{ ms}$ $T_{IIME} = 11.004 \text{ ms}$ $T_{IIME} = 11.990 \text{ ms}$

IAEA 2006 - NSTX Overview - J. Menard

High-harmonic fast waves (HHFW) and electron Bernstein waves (EBW) being explored for low- I_P heating and I_P ramp-up

- Can heat 200eV target plasma
- Achieved at highest B_T = 5.5kG
 - Reduced parametric decay instabilities
 - Reduced surface wave excitation
- •Will attempt to ramp-up CHI plasma with HHFW-CD & BS overdrive

NSTX is continuing to contribute to fundamental toroidal confinement science in support of ITER and future ST's

- NSTX normalized performance approaching ST-CTF level
- Only ST in world with advanced mode stabilization tools and diagnostics
- Unique tools for understanding transport and micro-turbulence
- Broad ITER and CTF-relevant boundary physics research program
- Uniquely able to mimic ITER fast-ion instability drive with full diagnostics
- Demonstrated 160kA closed-flux plasma formation in NSTX using CHI
- Improved understanding of HHFW and EBW coupling efficiency

ST offers compact geometry + high β attractive for CTF & reactor