

Resistive Wall Mode Active Stabilization in High Beta, Low Rotation Plasmas

S.A. Sabbagh¹, R. E. Bell², J.E. Menard², D.A. Gates², A.C. Sontag¹, J.M. Bialek¹, B.P. LeBlanc², F. Levinton³, K. Tritz⁴, H. Yu³, and the NSTX Research Team

¹Department of Applied Physics, Columbia University, New York, NY, USA ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA ³Nova Photonics, Inc., Princeton, NJ, USA ⁴Johns Hopkins University, Baltimore, MD, USA

16 – 21 October, 2006 Chengdu, China

Experiments in 2006 examined RWM physics and stabilization at ITER-relevant rotation

RWM active stabilization

- New control system installed
- RWM control demonstrated
- RWM actively stabilized in slowly rotating plasmas

Plasma rotation control

- Sustained rotation by realtime reduction of amplified error field
- Reduced rotation by nonresonant magnetic braking

NSTX / ITER RWM control

<u>Advantage</u>: low aspect ratio, high β provides high leverage to uncover key tokamak physics for ITER (e.g. RWM control, momentum dissipation)

RWM Active Feedback System Installed on NSTX

- Stabilizer plates for kink mode stabilization
- External midplane control coil closely coupled to vacuum vessel
 - Similar to ITER port plug designs
- Internal sensors can detect n = 1 − 3 RWM
 - □ Unstable n = 1 − 3 RWMs already observed in NSTX (Sabbagh, et al., NF 46 (2006) 635.)
 - n > 1 RWM studied during n = 1active stabilization

Dynamic error field correction (DEFC) increases pulse length in strongly rotating plasmas

Open-loop control of error field amplified by stable RWM

- yields higher rotation
- yields longer pulse
- Combination of open + closed loop control yielded best result
 - Rotation increase or saturation at long pulse lengths - first time in NSTX

RWM stabilized at ITER-relevant rotation for ~ 90/yRWM

(Sabbagh, et al., PRL 97 (2006) 045004.)

- First such demonstration in low A tokamak

 - n = 2 RWM amplitude increases, mode remains stable while n = 1 stabilized
 - <u>Multi-mode</u> research connection to RWM stabilization in RFPs

RWM stabilized at ITER-relevant rotation for ~ 90/yRWM

(Sabbagh, et al., PRL **97** (2006) 045004.)

RWM stabilized at ITER-relevant rotation for ~ 90/yRWM

IAEA FEC 2006 PD: S.A. Sabbagh 7

Rotation reduced far below RWM critical rotation profile

Rotation typically fast and sufficient for RWM passive stabilization

□ Reached $\omega_{\phi}/\omega_{A} = 0.48|_{axis}$

Non-resonant n = 3 magnetic braking used to slow entire profile

• The
$$\omega_{\phi}/\Omega_{crit} = 0.2|_{q=2}$$

- \Box The $\omega_{\phi}/\Omega_{crit} = 0.3|_{axis}$
- Less than $\frac{1}{2}$ of ITER Advanced Scenario 4 $\omega_{\phi}/\Omega_{crit}$ (Liu, et al., NF 45 (2005) 1131.)
- Rotation profile responsible for passive stabilization, not just single radial location

see paper EX/7-2Rb Sontag

Observed rotation decrease follows NTV theory

(Zhu, et al., PRL 96 (2006) 225002.)

- First quantitative agreement using full neoclassical toroidal viscosity theory (NTV)
 - Due to plasma flow through non-axisymmetric field
 - Computed using experimental equilibria
 - Trapped particle effects, 3-D field spectrum important
- Viable physics for simulations of plasma rotation in future devices (ITER, CTF, KSTAR)
 - Scales as $\delta B^2(T/v_i)(1/A)^{1.5}$
 - Low v_i ITER plasmas will have higher rotation damping

see EX/7-2Rb Sontag

Varying relative phase shows positive/negative feedback

RWM active feedback on n = 1

Control current relative phase, $\Delta \phi_f$

Phase scan shows superior settings for negative feedback

- Pulse length increases
- □ Internal plasma mode seen at $\Delta \phi_f$ = 225, damped feedback system response

Gain scan also performed

Sufficiently high gain showed feedback loop instability

RWM may change form and grow during active control

- Poloidal n =1 RWM field decreases to near zero
 - Radial RWM field increasing
- Subsequent growth of poloidal RWM field
 - Asymmetric above/below midplane
- Midplane radial sensor shows RWM bulging
 - Upper/lower radial sensors show decrease, while midplane sensor increases
 - Theory: may be due to stable ideal n = 1 modes becoming less stable (e.g. q evolution)

Future research will assess using combined sensors for optimization

Clear differences between RWM and internal plasma mode

IAEA FEC 2006 PD: S.A. Sabbagh 12

NSTX begins RWM active stabilization research relevant to ITER and beyond

- **□** First demonstration of RWM active stabilization in high β, low A tokamak plasmas with $ω_{\phi}$ significantly less than $Ω_{crit}$
 - In the predicted range of ITER
 - Plasma response to feedback control demonstrated
- Stability of n = 2 RWM demonstrated during n = 1 RWM stabilization
 - \square n = 1,2 plasma mode sometimes observed; fast β collapse, recovery
- Plasma rotation reduction by non-resonant applied field; follows NTV theory
 - □ Full NTV calculation yielding quantitative agreement to experiment
 - Key component of RWM stability physics and dynamics; general momentum transport relevance

Additional slides for poster follow

Work slides follow

NSTX begins RWM active stabilization research relevant to ITER, KSTAR, CTF

<u>Close connection to present experiments in NSTX impacts</u> <u>the KSTAR stability physics study</u>

- RWM active stabilization demonstrated in low rotation (ITER-relevant) plasmas (Sabbagh, et al., PRL 97 (2006) 045004)
 - □ KSTAR with co-NBI should have rotation control for experiments
- Precise plasma rotation control through neoclassical toroidal viscosity (Zhu, et al., PRL 96 (2006) 225002)
 - n = 2 non-resonant magnetic braking possible rotation control option for KSTAR
- Unstable resistive wall mode with toroidal mode number n > 1 observed (Sabbagh, et al., NF 46 (2006) 635)
 - May need to address n > 1 unstable modes in KSTAR at the highest beta or for certain equilibrium profile shapes
- RWM critical rotation speed (H. Reimerdes, et al., PoP 13 (2006) 056107)
 - Dependence on aspect ratio, Alfven speed, ion collisionality key research topic

