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Abstract. The relationship between momentum and energy transport is investigated with
focus on understanding recent experimental observations, using global gyrokinetic simulations
with proper coupling between turbulence and neoclassical dynamics. First, a large inward flux
of toroidal momentum is found robustly in the post saturation phase of ion temperature gradient
(ITG) turbulence. As a consequence, core plasma rotation spins up. The underlying physics
for the inward flux is identified to be the generation of residual stress due to the k‖ symmetry
breaking induced by self-generated zonal flow shear which is rather stationary in global simu-
lations. Our neoclassical simulations have observed an enhancement of neoclassical momentum
transport in steep rotation gradient regions and a significant inward nondiffusive momentum
flux driven by ion temperature gradients. However, the overall neoclassical contribution to the
toroidal momentum transport is negligibly small. It is found that residual turbulence can sur-
vive the dissipation of a strong mean E × B flow shear and drive a significant momentum flux.
Moreover, the equilibrium E × B flow shear is found to reduce the turbulence driven transport
for energy more efficiently than for momentum. These findings may offer one explanation for
recent puzzling experimental observations that the toroidal momentum transport remains highly
anomalous, even while the ion heat flux is reduced to a neoclassical level.

I. Introduction

The E × B flow shear is well known to reduce low-k turbulence and associated anomalous
transport, in particular, the ion heat flux. Via the radial force balance, the equilibrium E × B
flow is related to the plasma pressure profile and rotations which, in turn, are governed by
energy, particle and momentum transport. Recent studies of momentum transport in toroidal
systems have been motivated by attempts to understand the spontaneous or intrinsic rotation
discovered in experiments.1 There has been increased research interest in this aspect, focusing
on searching for and understanding non-diffusive mechanisms. Global gyrokinetic simulations
using the Gyrokinetic Tokamak Simulation (GTS) code2 have been carried out to investigate
turbulence driven momentum and energy transport and their relationship for realistic tokamak
parameters. Moreover, recent findings from experiments indicate that the toroidal momentum
transport remains highly anomalous, even while the ion heat flux is reduced to a neoclassical
level,3 presumably due to the suppression of low-k turbulence in the presence of strong E × B
shear. Motivated by this observation, we investigate the possibility that some residual low-k
turbulence, even in the presence of relatively strong E × B shear, can lead to a momentum
flux level much higher than the neoclassical value, but with ion heat flux on the order of the
neoclassical value. This issue is also highly relevant to ITER because similar phenomena may
occur in transport barriers of burning plasmas where stabilization of resistive wall modes relies
on the rotation.

GTS simulation is based on a generalized gyrokinetic simulation model with a particle-in-cell
approach, and incorporates the comprehensive influence of non-circular cross section, realistic
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plasma profiles, plasma rotation, neoclassical (equilibrium) electric field, Coulomb collisions,
and other features. It directly reads plasma profiles of temperature, density and toroidal an-
gular velocity, from the TRANSP experimental database, and a numerical MHD equilibrium
reconstructed by the JSOLVER or ESC code using TRANSP radial profiles of the total pressure
and the parallel current (or safety factor), along with the plasma boundary shape. Also studied
are the counterparts of neoclassical transport using the GTC-NEO code.4

II. Gyrokinetic simulation model for rotating plasma and turbulence dynamics

The gyrokinetic simulation model for rotating plasmas is briefly described first. The gyrokinetic
particle distribution is expressed as f = f0 + δf . Here we separate the turbulence perturbation
δf from the equilibrium distribution f0. The equilibrium distribution function f0, with mag-
netic moment μ and parallel velocity v‖ as independent velocity variables, is determined by the
neoclassical dynamics and obeys

∂f0

∂t
+ (v‖b̂ + �vE0 + �vd) · ∇f0 − b̂∗ · ∇(μB +

e

mi

Φ0)
∂f0

∂v‖
= Ci(f0, f0). (1)

Here �vE0 is the E × B drift velocity corresponding to the equilibrium potential Φ0. �vd is the
∇B drift velocity, b̂∗ = b̂ + ρ‖b̂ × (b̂ · ∇b̂) with b̂ = B/B, and Ci is the Coulomb collision
operator. The lowest order solution of Eq. 1 is a shifted Maxwellian consistent with (large)
plasma rotation:4

f0 = fSM = n(r, θ)(
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Ti
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, (2)

where the parallel flow velocity Ui is associated with the toroidal rotation by Ui = Iωt/B
with ωt the toroidal angular velocity and I the toroidal current, and n(r, θ) is the ion density

n(r, θ) = N(r)e
miU2

i
2Ti

− eΦ̃0
Ti . The total equilibrium potential consists of two parts, Φ0 = 〈Φ0〉 + Φ̃0.

Here, 〈〉 denotes a flux surface average. The poloidally varying component Φ̃0 can be generated
by the centrifugal force which drives charge separation on a magnetic surface in strongly rotat-
ing plasmas.5 Generally the radial potential 〈Φ0〉 is dominant. The equilibrium radial electric
field can be calculated from a first-principles based particle simulation of neoclassical dynamics
with important finite orbit effects,4 or obtained by direct experimental measurement if available.
Instead of using a true neoclassical equilibrium distribution function, which is unknown analyt-
ically, we use this lowest order solution for equilibrium toroidal plasmas. A shifted Maxwellian
with either model or experimental profiles of 〈n(r, θ)〉, Ti(r) and ωt(r) is prescribed for the ions.
In the electrostatic limit, the ion gyrokinetic equation for the turbulence perturbation δfi is
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f0. (3)

Here �vE is the E×B velocity corresponding to the fluctuation potential Φ̄, and C l
i is the linearized

Coulomb collision operator. On the right hand side, the third term proportional to ∇Ui is the
Kelvin-Helmholtz-type driver term, The other terms containing Ui are also retained, which can
be important when the Mach number of plasma flow is high.

Global gyrokinetic turbulence is characterized by distinguishable dynamical phases, from linear,
to nonlinear transient, to a well developed turbulent state. In coordinate space, toroidal eigen-
modes are driven initially in the linearly unstable region, forming radially elongated streamers.
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Later on, the streamers are broken by the self-generated zonal flow during nonlinear satura-
tion. A major turbulence radial spreading associated with nonlinear wave coupling immediately
follows, resulting in global turbulence.2 In wavenumber space, after the linear growth of insta-
bility, nonlinear toroidal couplings transfer energy from the linearly unstable modes to longer
wavelength damped modes, and form a down-shifted toroidal spectrum in the fully developed
turbulence regime.6

Ideally, the dynamics of gyrokinetic turbulence should not be sensitive to numerical techniques.
This has been carefully examined for GTS simulations. The GTS code solves the gyrokinetic
Poisson equation in coordinate space, and in simulations it, in principle, retains all (m,n) modes
from (0,0) all the way to a limit which is set by grid resolution, and therefore retains complete
nonlinear energy coupling channels. There are two largely different Poisson solvers implemented
in the GTS simulation. In a simple geometry limit, i.e, large aspect ratio and circular cross
section, turbulence fluctuations δΦ on small spatial and fast time scales and axisymmetric zonal
flow 〈Φ〉 on large spatial and slow time scales can be decoupled using i) a Pade approximation,
i.e, Γ0(b) ≡ I0(b)e

−b ≈ 1/(1 + b) with I0 the modified Bessel function and b = (k⊥ρi)
2, and ii)〈
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≈ 〈̃Φ〉. The resulting two equations are2

(
1 +

Ti

Te

)
eδΦ

Ti

− eδ̃Φ

Ti

=
δn̄i − 〈δn̄i〉

n0

− δn(1)
e − 〈δn(1)

e 〉
n0

, (4)

1

V ′
r

d

dr

[
dΦ00

dr
V ′

r〈grr〉
]

=
1

V ′
r

d

dr

{
d

dr

[
Ti

e

(〈δn̄i〉
n0

− 〈δn(1)
e 〉

n0

)]
V ′

r〈grr〉
}

−〈 1

ρ2
i

〉Ti

e

(〈δn̄i〉
n0

− 〈δn(1)
e 〉

n0

)
. (5)

Because turbulence dynamics on different spatio-temporal scales are separated in solving the
Poisson equation, the advantages are apparent. However, the above approximations, particular
the second one, are not justified in general toroidal geometry. This has motivated us to develop a
generalized Poisson solver which solves an integral equation for the total potential: Φ = δΦ+〈Φ〉,

(
1 +

Ti

Te

)
eΦ

Ti

− eΦ̃

Ti

− e〈Φ〉
Te

=
δn̄i

n0

− δn(1)
e

n0

. (6)

As shown in the left panel of Fig. 1, in the case of large aspect ratio and weak shaping, the
two highly different solvers give almost the same results, and the turbulence dynamics is not
sensitive to i) how we solve gyrokinetic Poisson equation. Also carried out are other sensitivity
tests. Indeed nonlinear turbulence dynamics is shown to be insensitive to ii) how the simulation
mesh is set up (middle panel of Fig. 1) and iii) the number of simulation particles (right panel
of Fig. 1). Therefore, the turbulence evolution process, appearing robustly, is not an artificial
picture, but real physics. This is important, as a large inward toroidal momentum flux, to
be presented, driven with ITG turbulence, is closely related to the transient phase of global
turbulence development.

Global gyrokinetic turbulence and driven fluxes are typically characterized by spatio-temporal
bursting behavior in various simulations. As shown in Fig. 2, coherent spatio-temporal bursting
structures with radially inward propagation, likely to be non-diffusive, are observed in turbulence
intensity, zonal flow and associated heat and toroidal momentum flux. A high frequency com-
ponent shown in the zonal flow is related to geodesic acoustic oscillations with radially varying
frequency dependent on the ion temperature profile. The physics processes driving these radi-
ally propagating bursting fluctuations may involve turbulence spreading, turbulence and zonal
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Figure 1: Time evolution of turbulence driven ion heat flux under various numerical sensitivity
tests, showing that turbulence dynamics in global simulations is rather robust.

flow interplay, change of local plasma gradients due to turbulence driven trasnport, etc. The
underlying nonlinear physics, however, has not been seriously studied. Its connection with the
nature of turbulence transport also needs to be understood.

Figure 2: Spatio-temporal evolution of turbulence intensity, zonal flow and momentum flux.

III. Turbulence driven inward non-diffusive momentum flux and zonal flow shear
generated residual stress

The turbulence driven toroidal angular momentum flux in the radial direction, which is defined
in general geometry as

〈�Γφ · ρ̂〉 ≡ 〈
∫

d3vmRvφ�vδE · ∇ρ/|∇ρ|δf〉 ≡ −mnχeff
φ (ρ)〈R2|∇ρ|〉dωφ

dρ
, (7)

includes various elements, namely diffusion, convection or “pinch” and off-diagonal flux or fluctu-
ation driven residual stress. A generic structure of toroidal momentum transport was described
recently.7 Searching for nondiffusion elements and understanding underlying mechanisms have
been the focus of recently intensive theoretical and experimental effort. A key result of our
simulations is the finding of an inward flux of toroidal momentum driven in the post saturation
phase of ITG turbulence. Simulation results for a counter-rotating plasma are presented in Fig.
3. where the momentum diffusion is in the inward direction. It is observed that a remarkably
large inward toroidal momentum flux occurs during the transient phase of turbulence develop-
ment, which is after the nonlinear saturation of the ITG instability, but before a well developed
steady state. As we discussed before, the appearance of this post-saturation phase flux does not
depend on the details of numerical techniques. This inward momentum flux pumps the toroidal
momentum from the outer region to the core while maintaining approximately global momentum
conservation, resulting in a change in the toroidal rotation with a magnitude of a few percent of
the local thermal velocity. Other interesting observations include that the ITG driven momentum
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flux settles down to a relatively low level in the long time steady state. Our simulations verify
that there exists strong coupling between ITG driven ion momentum and heat transport, and
that the ratio of effective momentum and heat diffusivities χφ/χi is on the order of unity, as seen
in Fig. 3. This is in broad agreement with experimental observations in conventional tokamaks,
where low-k fluctuations are believed to be responsible for a high level of plasma transport.8
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Figure 3: Time history of ion heat flux, par-
allel velocity, toroidal momentum flux and ef-
fective χφ/χi, and spatio-temporal evolution
of ion parallel flow during ITG turbulence.

More surprisingly, an inward momentum flux is
driven for the case of positive rotation gradient,
where the momentum diffusion is outward. This
indicates its non-diffusive nature. As a conse-
quence, core plasma rotation spins up, resulting in
Δu‖ a few percent of vth in the case of no momen-
tum source at the edge. Generally, there are two
different channels which contribute to the non-
diffusive momentum flux. One is a momentum
pinch or convective flux which is proportional to
the toroidal rotation velocity; Another is the off-
diagonal flux which is driven by residual stress
with no dependence on rotation or rotation gra-
dient. Recently extensive theoretical works have
been carried out to calculate momentum pinch
velocity9,10 and the residual stress driven by fluc-
tuations and pressure gradients11. Identification
of various nondiffusive elecments and their signifi-
cance are certainly highly interesting, but difficult
in experiments. To this end, we have carried out
a series of numerical experiments, with and with-
out mean E×B shear flow, and with and without
toroidal rotation as well as rotation shear. The in-
ward momentum flux is robustly observed in var-
ious situations, and appears to be dominated by
off-diagonal contributions. It is reasonably an-
ticipated that this off-diagonal flux may lead to
the buildup of an experimentally relevant rota-
tion profile structure (i.e., core rotation spin up)
when there is a momentum source at the edge;
but a true demonstration may require an edge momentum source to be implemented in future
simulations on the transport time scale. Moreover, the facts that the long-time steady state
toroidal momentum flows against the rotation gradient and that the momentum flux vanishes
in cases of rigid rotation (including zero rotation) indicates that it is mostly diffusive.

To obtain a nondiffusive momentum flux, it commonly requires a mechanism for broken k‖
spectrum symmetry so as to generate a net acceleration of parallel flow. Such a mechanism
includes a mean E × B velocity shear,11 which shifts the eigenmode to one side radially, and
then producing a non-vanishing averaged k‖. In toroidal geometry, the interplay of magnetic field
curvature coupling and ballooning structure is found to cause the symmetry breaking.9 From
the view point of local analysis and simulation, the turbulence self-generated zonal flow shear
has no preferred direction in a statistical sense, and therefore has little direct effect. However,
for global simulations zonal flow dynamics is found to be significantly different from the local
picture. In global ITG turbulence zonal flow is shown to be slowly varying in time and of large
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scale in space,2, as shown in the lower-right panel of Fig. 4. This observation of quasi-stationary
zonal flow motivated us to explore the effect of zonal flow shear on k‖ symmetry breaking, and
has lead to the discovery of residual stress generation due to zonal flow shear. The major results
are presented in Fig. 4, where the average parallel wavenumber of the turbulence spectrum is
defined as

〈k‖〉(r) ≡ 1

qR0

∑
(nq − m)δΦ2

mn∑
δΦ2

mn

. (8)

First, the upper left panel shows a close correlation between the toroidal momentum flux Γφ and
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Figure 4: Time history of Γφ and −〈k‖〉 (upper-left), Γφ and −〈k‖〉δΦ2 (lower-left) and zonal
flow ωE×B and −〈k‖〉 (upper-right); spatio-temporal evolution of zonal flow (lower-right).

〈k‖〉 in time history. Further, the lower-left panel, showing roughly that Γφ ∝ −〈k‖〉δΦ2, suggests
that the residual stress is a dominant contribution to the inward momentum flux. Finally, a clear
correlation between the zonal flow shearing rate ωE×B and 〈k‖〉 illustrated in the upper-right
panel indicates that the non-vanishing 〈k‖〉 is caused by the zonal flow shear. Therefore the
underlying physics for the inward flux is identified to be the generation of residual stress due
to k‖ symmetry breaking induced by self-generated zonal flow shear, which is quasi-stationary
in global simulations. Since zonal flows are nonlinearly self-generated by turbulence, this may
represent an universal mechanism to drive a nondiffusive momentum flux via associated residual
stress in low-k turbulence. The importance of nondiffusive momentum flux associated with
residual stress is emphasized in accounting for the build-up of core peaked rotation profiles in
experiments through spontaneous rotation coupled to a dynamic source at the edge.12

IV. Neoclassical diffusive and non-diffusive momentum flux

An accurate assessment of the baseline of momentum transport due to collisional dissipation
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in realistic toroidal plasmas is certainly required to understand any anomalous momentum
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Figure 7: Comparison of GTC-NEO
and TRANSP results for effective mo-
mentum and heat diffusivity.

transport and torque in experiments. It is also highly
interesting to study nonlocal physics in neoclassical mo-
mentum transport and to identify any non-diffusive neo-
classical momentum flux. Our global neoclassical parti-
cle simulation using the GTC-NEO code, which includes
nonlocal physics due to large orbit effects, is employed
for these studies. First, it is observed that neoclassical
momentum transport in the banana-plateau regime is
significantly enhanced when the toroidal rotation gradi-
ent is large. In these simulations, off-diagonal flux is ex-
cluded by using a uniform temperature profile. As shown
in Fig. 5, the simulated neoclassical angular momentum
flux in the steep gradient region is 5-6 times larger than
the theory prediction.5 Second, our neoclassical simula-
tions also show that the ion temperature gradient can
drive a significant inward nondiffusive momentum flux
(Fig. 6). However, the overall neoclassical contribution
to the momentum transport is negligibly small compared
to experimental levels for NSTX (Fig. 7) and DIII-D plasmas. The effective neoclassical χφ/χi

is ∼ 0.1− 0.01, even with the enhancement of momentum transport in the steep rotation profile
region.

V. Residual turbulence and co-existence of normal ion heat and anomalous momen-
tum transport

In general, momentum transport is mostly anomalous even when ion heat transport is reduced to
a neoclassical level. The co-existence of normal ion heat and anomalous momentum transport has
been widely observed in various machines, but with little understanding. An example is shown in
Fig. 7. Motivated by this observation, we have investigate residual low-k turbulence in the regime
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of strong E × B shear. Based on our systematic investigations for both ITG turbulence-driven
and neoclassical momentum and heat transport, we propose a possible explanation for this long
standing puzzle. First, as is verified by our turbulence simulations, there exists strong coupling
between ion momentum and heat transport with the effective χφ/χi on the order of unity for ITG
turbulence, which is much larger than its neoclassical counterpart. Further, it is found that finite
residual turbulence can survive strong mean E × B shear flow induced damping. As illustrated
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in Fig. 8, the ITG instability is shown to be linearly stable in the presence of the E × B shear.
However, if we run simulations without the E × B shear at first, and impose the E × B shear
after the turbulence saturates nonlinearly, we observe that the turbulence, while significantly
reduced (by a factor of 10 in intensity), is not totally quenched. Results indicate that applying
the E×B shear later (rather than initially) produces results closer to the experimental trends,
and the resulting ion heat flux (reduced by a factor of 10) corresponds reasonably closely to the
neoclassical value, while the momentum flux remains anomalous, significantly higher than the
neoclassical level. Moreover, the effective χφ/χi is found to increase in the presence of consistent
equilibrium E × B shear flows, as is shown in Fig. 9. This result indicates that the E × B flow
shear, while lowering all associated turbulence driven radial fluxes via suppressing fluctuations,
reduces the transport of energy more efficiently than of momentum. The underlying physics may
be related to the generation of residual stress due to the mean E×B shear induced k‖-symmetry
breaking. These findings may offer one explanation for recent experimental observations that
the toroidal momentum transport remains highly anomalous, even while the ion heat flux is
reduced to a neoclassical level.
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