Supported by

Presion Energy Sciences

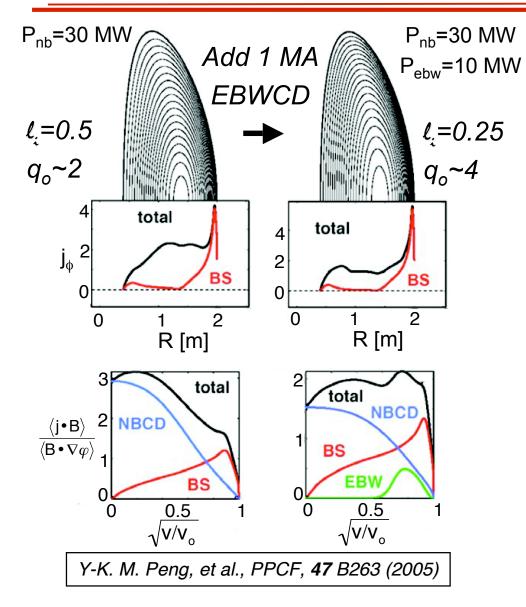
Office of

Science

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U SNL** Think Tank, Inc. **UC Davis** UC Irvine **UCLA** UCSD **U** Colorado **U Maryland U** Rochester **U** Washington **U Wisconsin**

Investigation of Electron Bernstein Wave Coupling and its Critical Dependence on EBW Collisional Loss in High-β, H-Mode ST Plasmas

<u>S.J. Diem</u>¹, J.B. Caughman¹, P.C. Efthimion², H. Kugel², B.P. LeBlanc², C.K. Phillips², J. Preinhaelter³, S.A. Sabbagh⁴, G. Taylor², J. Urban³, J.B. Wilgen¹


¹Oak Ridge National Laboratory, Oak Ridge, TN, USA, ²Princeton Plasma Physics Laboratory, Princeton, NJ, USA, ³Czech Institute of Plasma Physics, Prague, Czech Republic, ⁴Columbia University, New York, NY, USA

22nd IAEA Fusion Energy Conference, 13-18 October 2008 Geneva, Switzerland

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA. Cadarache **IPP**, Jülich **IPP**, Garching ASCR. Czech Rep **U** Quebec EBW emission measurements provide guidance for future ST heating & current drive systems

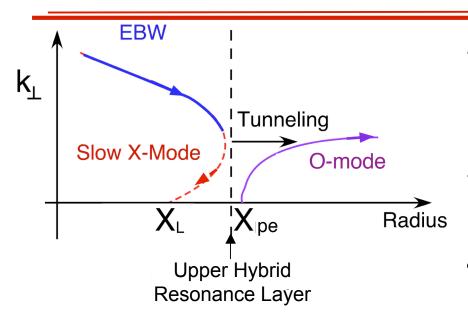
- Next generation STs require non-inductive plasma startup and off-axis current drive (CD) to sustain $\beta > 20\%$ plasmas
 - Low magnetic field and high n_e prevent propagation of low EC harmonics used in traditional tokamaks
- Feasibility of EBW heating & CD in the ST critically dependent on coupling to EBWs in H-mode
 - EBW coupling studied by measuring thermal EBW emission (EBE)
- Studied efficiency of B-X-O mode conversion in H-mode & compared to theoretical predictions
 - Investigate effects of edge conditioning on EBW coupling
 - Experimentally map B-X-O transmission efficiency, $\eta_{\text{B-X-O}}$

EBW research objective to assess ability of EBWCD to generate off-axis stabilizing current in ST-CTF

- Modeling shows adding 1 MA of off-axis EBWCD to ST-CTF plasma significantly increases stability:
 - β_n increases from 4.1 to 6.1
 - β_t increases from 19% to 45%
- EBW also candidate for NTM suppression via j(R) control
- Need efficient coupling of RF power to EBWs
 - Assess oblique O-X-B coupling by measuring B-X-O emission

NSTX

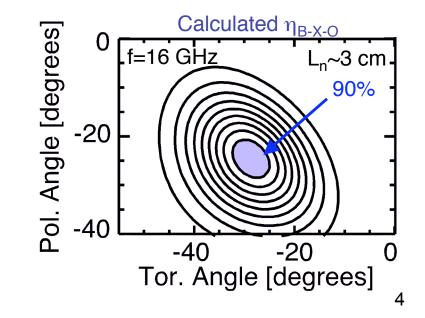
Propagation of EC waves prohibited in the ST


- EC waves used in tokamaks for current drive (CD), heating and T_e(R) measurements
- NSTX has low magnetic fields and high n_e, cutting off up to first 6 EC harmonics
 - EBWs are strongly absorbed/emitted from EC harmonics
- EBWs cannot propagate in vacuum outside upper hybrid resonance (UHR) layer

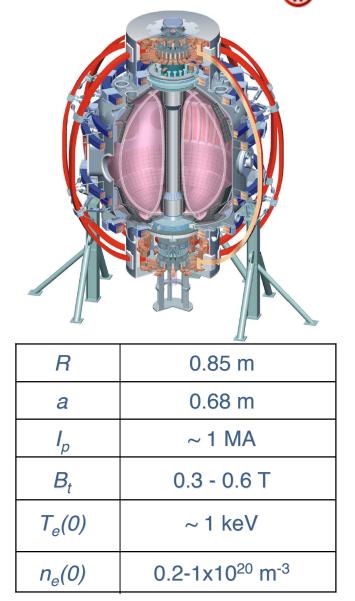
60 LCFS t_R,X uhr Frequency [GHz] 5f_{ce} $4f_{ce}$ $3f_{ce}$ I_{ce} $\mathbf{0}$ 0.8 1.0 1.2 1.4 1.6 1.8 Major Radius [m]

NSTX

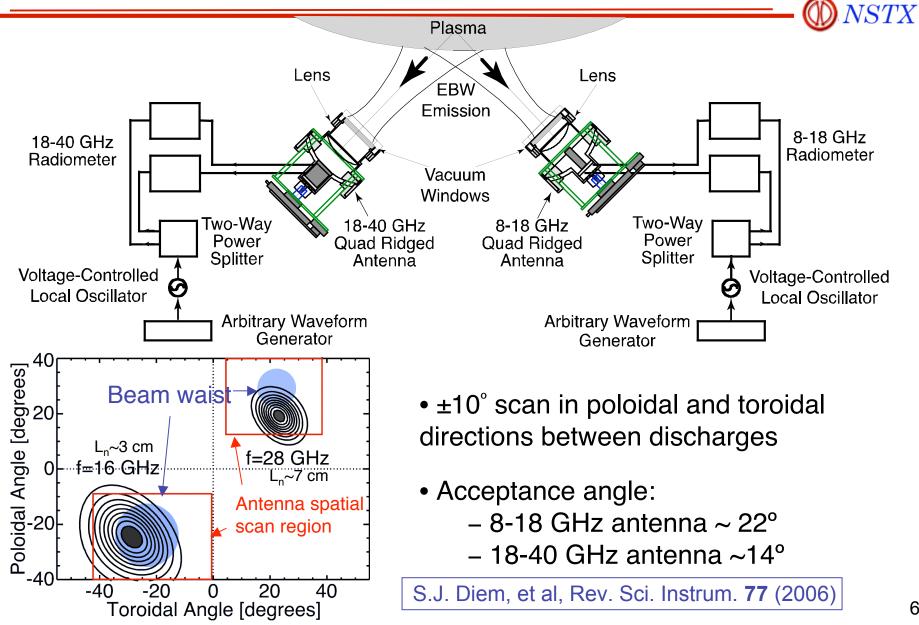
EBW emission data can be used to provide coupling efficiency and polarization information for heating and current drive system


EBW coupling to electromagnetic waves

 EBW emitted at EC harmonic converts to X-mode at UHR and then O-mode


NSTX

- Emission elliptically polarized due to oblique view of plasma
- $\eta_{\text{B-X-O}}$ less sensitive to L_n than $\eta_{\text{B-X}}$
- B-X-O transmission angle depends on field and pitch (~30-45°) at MC layer
- L_n at MC layer determines width of window
- Measured $T_{rad} = local T_e provided \eta_{B-X-O} \sim 100\%$


B-X-O emission provides method to investigate feasibility of O-X-B injection

- For NSTX plasmas, τ ~3000 near EC harmonics
 - EBW emission is at blackbody levels
 - Radiometer can be absolutely calibrated to provide $T_e(R,t)$
- Experiments focused on optimizing $\eta_{\text{B-X-O}}$ and comparing to theoretical predictions
 - Physics of B-X-O emission and O-X-B injection are symmetric
 - Finding optimal conditions of B-X-O emission economically provides information on optimizing O-X-B injection

NSTX

Remotely steered EBE diagnostic allows spatial mapping of emission window

Linear actuators allow ± 10° poloidal and toroidal steering

- Two drives provide motion in poloidal & toroidal direction
- Spherical housing provides steering
- Antennas located outside vacuum vessel
- Quad-ridged antennas measure two orthogonally polarized radiation components
 - Dividing the components yields polarization
 - Adding components yields total power
- Remote steering allows optimization of B-X-O transmission efficiency
 - Needed to explore the feasibility for EBW based heating & CD

Mounting system designed by J. Caughman (ORNL)

VSTX

Linear steering

actuators

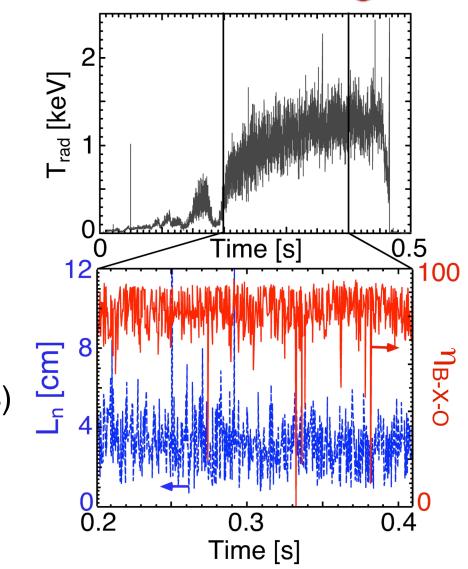
Q-Par WBH1840KDP Quad-Ridged Antenna

Lens

Vacuum Window

Polarization=

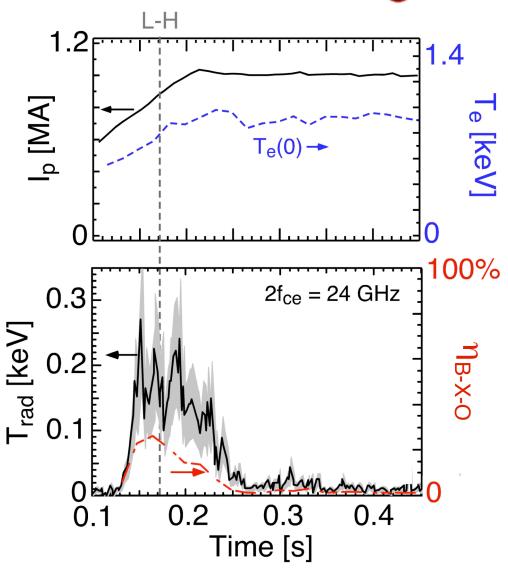
EBE simulation code includes EBE antenna pattern and 3-D plasma equilibrium


- Code inputs:
 - Magnetic equilibria (EFIT)
 - $\rm T_{e}$ & $\rm n_{e}$ profiles from Thomson scattering
 - Antenna pattern measurements
- Beam is modeled by a symmetric distribution of 41 rays
- Mode conversion (MC) efficiency is determined by the full wave solution for a cold plasma slab
- 3D ray-tracing code describes EBW propagation after MC
- T_{rad} determined by simultaneously solving ray equations with the radiative transfer equation for each ray

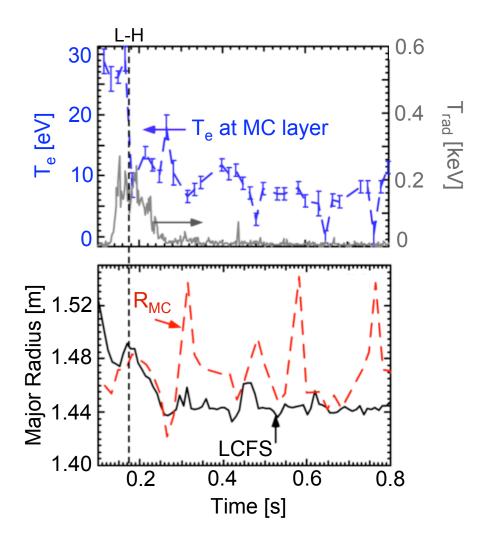
Large T_{rad} fluctuation are predominately due to changes in B-X-O transmission efficiency

- T_{rad} fluctuates > 30% for all frequencies
- Edge reflectometer used to measure n_e profile
 - Measured L_n fluctuates from 1 cm to 6 cm
- Theoretical η_{B-X-O} computed using measured L_n values

 Varies as ~ e^{L_n}
- Fluctuation levels of T_{rad} (30%) and η_{B-X-O} (20%) comparable

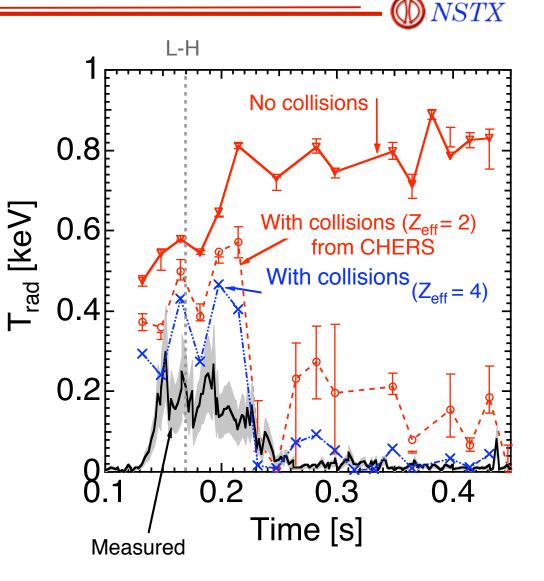

Maximum T_{rad} used to calculate measured $\eta_{\text{B-X-O}}$

VSTX


Initial H-mode EBE measurements exhibited decay in measured T_{rad} during H-mode phase

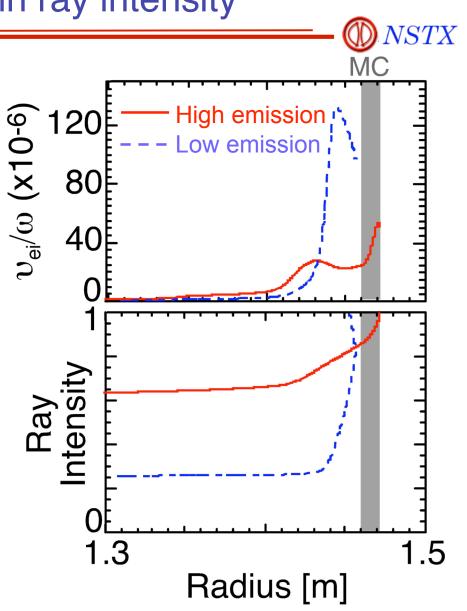
- H-mode regime focus of ST research
 - Need efficiency EBW coupling in H-mode
- Emission decays after L-H transition
 - Observed for $\rm f_{ce}, \, 2f_{ce}$ and $\rm 3f_{ce}$ emission
 - Emission location remains constant during discharge
- Leads to $\eta_{\text{B-X-O}}$ ~ 0% during H-mode
 - Low EBE levels do not support EBW heating & CD

Explanation for reduced EBE: Collisional damping

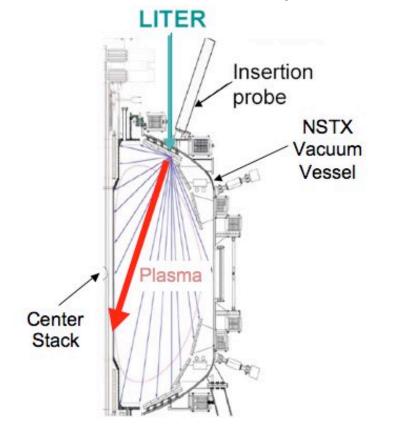

- After L-H transition, the MC layer moved outside last closed flux surface (LCFS)
 - T_e at MC layer reduced from 25 eV to 10 eV, increasing collisionality
- Simulations show collisional damping becomes significant for $\upsilon_{ei}/\omega>10^{-4}$
 - Typically occurs for T_e < 20 eV near MC layer in NSTX
- Only the e-i collisions contribute to EBW collisional damping
 - e-e collisional effects neglected due to momentum conversion
 - e-neutral effects neglected because neutral density is less than $0.05n_e$

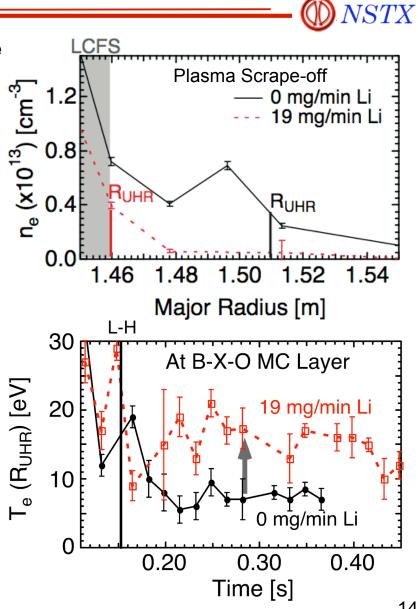
VSTX

Introducing EBW collisional damping to simulations reproduces observed EBE collapse at L-H transition


- MC layer moves outside LCFS after L-H transition
 T_e < 20 eV outside LCFS
- Simulations with collisional damping predict T_{rad} decay during H-mode
 - CHERS measurement 5 cm inboard from UHR yields $Z_{eff} = 2$
 - Simulations with Z_{eff} = 3,4 have closer agreement with measured T_{rad}

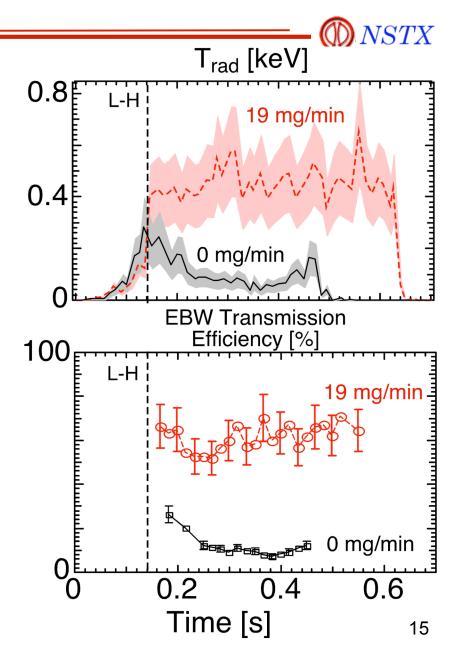
EBE simulations indicate increase in edge υ_{ei} results in significant loss in ray intensity


- Relative collision frequency increases after L-H transition:
 - Peak υ_{ei}/ω increases from $5x10^{-5}$ to $1.2x10^{-4}$
- Damped EBW power increases from 20-40% in the L-mode phase to 70-90% during H-mode

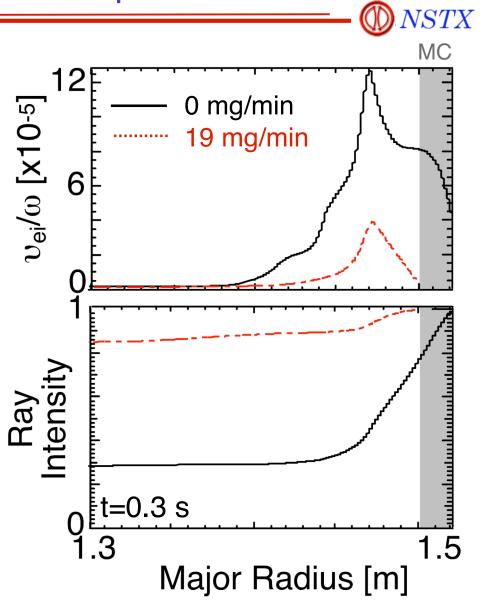

Need method to reduce collisionality near UHR layer → Li conditioning

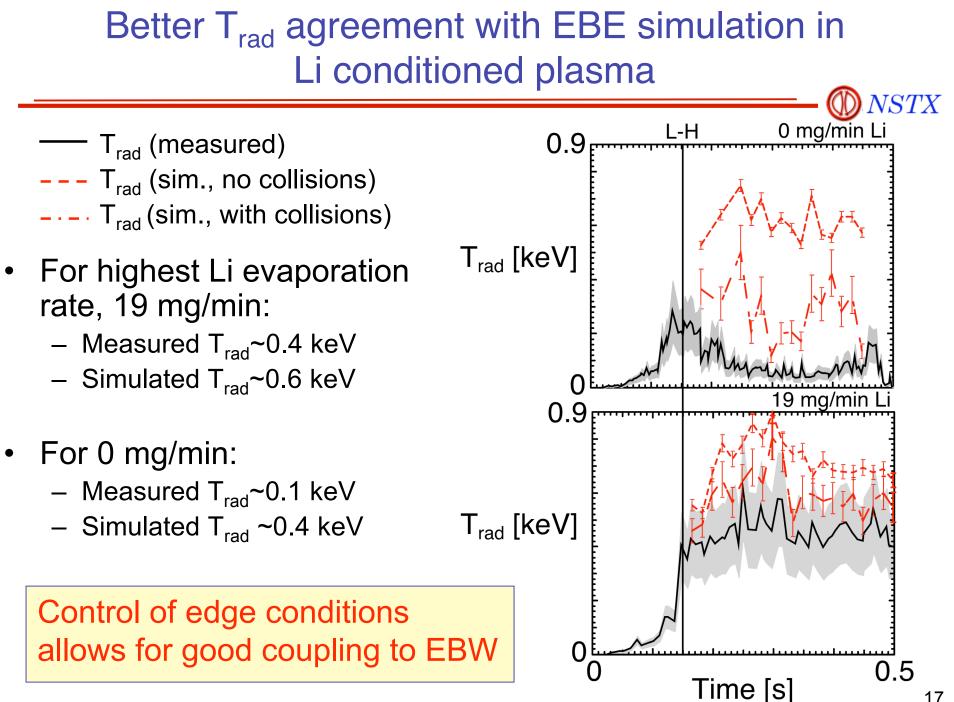
LIThium EvaporatoR (LITER) provides edge conditioning tool for NSTX

- B-X-O coupling depends on L_n and T_e
 - − Li conditioning $\uparrow T_e \& ↓ n_e$ near MC
- Reduction in edge n_e moves MC layer to LCFS where T_e ~ 20 eV

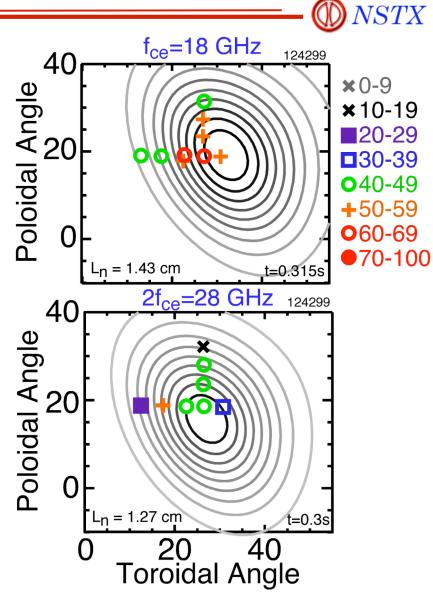


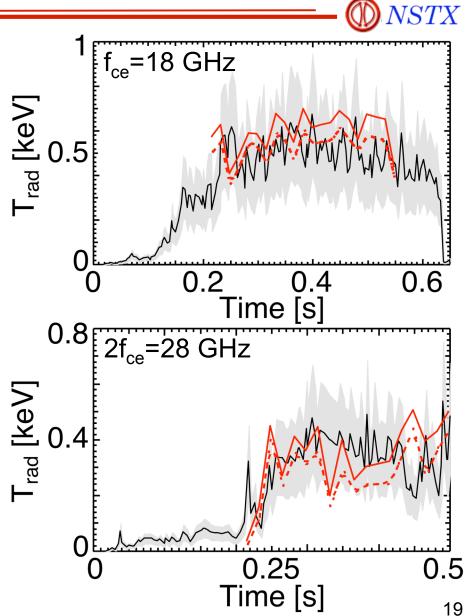
H-mode $\eta_{\text{B-X-O}}$ increased with Li edge conditioning


- Measured T_{rad} increased from ~ 50 eV to ~ 400 eV
 - 18 GHz emission from near plasma axis
- η_{B-X-O} increased with Li conditioning:
 - − From 10% → 60% for f_{ce} =18 GHz
 - − From 20% → 50% for $2f_{ce}$ =28 GHz
- Control of edge conditions provides good coupling to EBW


Increased B-X-O coupling supports EBW heating & CD possible in future ST devices

EBE simulations show reduction in edge collisionality with increased Li evaporation


- Collisional effects dominate without edge conditioning and reduce emission
 - $\,\upsilon_{\text{ei}}\,\text{decreased}$ by factor of 4
- Without edge conditioning, 70% of EBW power lost through collisional damping
- Simulations suggest ray intensity increases from 30% to > 80% near MC with Li


Angle of maximum B-X-O transmission consistent with theory in H-mode plasmas

- Repeated target plasma, (I_p=0.9 MA, T_e(0)~1keV) with Li conditioning
- Maximum measured
 transmission efficiencies:
 - 62±15% for f_{ce}=18 GHz near axis emission
 - 49±15% for 2f_{ce}=28 GHz near axis emission
- Comparable to the simulated $\eta_{\text{B-X-O}}$ values
 - $90 \pm 10\%$ for $f_{ce} = 18$ GHz
 - $-70\pm10\%$ for $2f_{ce} = 28$ GHz

Good agreement between measured and simulated T_{rad} in H-mode

- T_{rad} (measured) T_{rad} (sim., no collisions)
- Simulated & measured T_{rad} - 0.6 keV for f_{ce}=18 GHz - 0.4 keV for 2f_{ce}=28 GHz
- Low EBW collisional damping observed during H-mode scan
- Simulated and measured optimal pointing angle agree within 3°

Efficient EBW coupling demonstrated in NSTX H-mode - essential prerequisite for EBWCD in ST-CTF

- Early H-mode EBE measurements exhibited rapid decay in emission level after L-H transition
 - Modeling revealed very low EBE explained by collisional damping of the EBW prior to mode conversion
- First experimental observation of EBW collisional damping
 - Lithium edge conditioning used to reduce edge collisionality
 - $\eta_{\text{B-X-O}}$ increased from 10% to 60% for fundamental emission at 18 GHz; 20% to 50% for second harmonic emission at 28GHz
- B-X-O transmission efficiency mapped in H-mode
 - 50-60% maximum transmission for f_{ce}=18 GHz & 2f_{ce}=28 GHz in H-mode
 - Measured, simulated and theoretical optimum angles agree within 5°