

Comparison of Small ELM regimes in Alcator C-Mod, MAST, and NSTX

R. Maingi¹, A.E. Hubbard², H. Meyer³, J.W. Hughes², A. Kirk³, R. Maqueda⁴, J.L. Terry²,

And the Alcator C-Mod, MAST, and NSTX Research Teams

- 1) Oak Ridge National Laboratory, USA
- 2) Massachusetts Institute of Technology, USA
- 3) UKAEA Fusion, U.K.
- 4) Nova Photonics, USA

IAEA 2008 Fusion Energy Conference Geneva, SZ Oct. 13-18, 2008

Summary: Small ELMs with certain similarities observed in Alcator C-Mod, MAST, and NSTX

- Coordinated small ELM comparison experiments conducted in C-Mod, MAST, and NSTX
- In near double-null operation with matched poloidal crosssections and q_{95} , small ELMs observed in all three devices
 - Differs from more common NSTX Type V regime
- Common $\beta_{ped}^{pol} \sim 15\%$ threshold for small ELMs, but details between machines differ widely
 - Flux-surface average poloidal field at separatrix used in definition
 - Upper limit for small ELMs in MAST, lower limit in C-Mod and NSTX
 - $\beta_{\text{ped}}^{\text{tot}} \text{ (normalized to total magnetic field at outer midplane) range much broader across machines}$
 - Not an ordering parameter across machines
- Edge stability analysis with kinetic EFITs commencing

Motivation: looking for commonality in small ELM regimes to better assess extrapolability to ITER

- Many different small ELM regimes reported in literature
 - type-II, type-V, HRS, EDA at high β , QH-mode, etc.
 - Most regimes are observed at high v_{ped}^*
- Previous comparison between CMOD and JFT-2M showed that EDA and HRS mode access is similar with respect to q_{95} and v_{ped}^*
 - Experiments executed through ITPA PEP group
- MAST and NSTX also show small (and large) ELM regimes
 - MAST small ELMs in double-null
 - NSTX type-V ELMs mostly in lower-single null
- Key questions for *ITPA PEP-16* multi-machine comparison:
 - Are there common access conditions?
 - Are the ELM filamentary characteristics comparable?
 - Can any of the small ELM regimes be extended to low v_{ped}^{*} ?

Dedicated experiments conducted on C-Mod, MAST, and NSTX

- Common near double-null shape was chosen
 - e.g. type-II ELMs are observed close to DN
 - Lower single-null discharges also in NSTX for Type V ELM data
- Discharges with similar δ_{L} ~ 0.5 and κ ~ 1.8 selected
- Goal was to match q_{95} perform a power scan in each machine to get a range of β_{ped} and ν^*_{ped}
 - Power scan in each machine
- ELM characteristics and small ELM access conditions compared between the devices
 - Small ELM existence window
 - Filament structure
 - Pedestal structure

Good scaled poloidal cross-section shape match achieved in near double-null discharges

- C-Mod shape scaled by 2.8 and shifted inward by 0.19 m
- δ_L ~ 0.5, κ ~ 1.8
- Near double-null in all machines
 - Additional NSTX Type V ELM data in lower single-null
- q95 ~ 5.5 in all machines

C-Mod

Small ELMs observed above ~ 3 MW ICRF in Alcator C-Mod

Small ELMs appear as groups of detaching filaments; Pedestal top D_{α} affected in Alcator C-Mod

Modest changes to lower (and upper) triangularity changed signature of small ELMs in C-Mod

ONSTX

Larger change in triangularity (δ_L higher, δ_L lower) correlated with appearance of large ELMs in C-Mod

ONSTX

MAST

Small ELMs present over wide heating power range in MAST

Small ELMs in MAST consist of large number of filaments

- About twice as many filaments as compared with larger ELMs
- Most of the filaments do not detach, but rather dissipate

Small ELMs in MAST exist over a wide β_{ped} , v_e^* window

NSTX

Small ELMs in narrow heating power range close to DN

Small ELM has multiple filaments and propagates downward in NSTX near double-null discharges

Type V ELMs in wide heating power range in NSTX lower-single null discharges

IAEA 2008 Fusion Energy Conference, Paper EX/P6-4 (Maingi)

Type V ELM has single filament and propagates upward in NSTX lower single-null discharges

Pedestal β normalized to outer midplane B_{tot} not a good ordering parameter across machines for small ELM access window

- Small ELMs appear in C-Mod when $\beta_{ped}^{tot} \ge 0.3\%$
- Small ELMs in MAST exist at β_{ped}^{tot} down to 0.3% and vanish when $\beta_{ped}^{tot} \ge 3\%$,
- Type V ELMs appear in NSTX when $\beta_{ped}^{tot} \ge 6\%$
- 'Type II' ELMs in NSTX DN shape also appear when $\beta_{ped}^{tot} \sim 6\%$

Lowest β_{ped}^{pol} is ~ 15% for access to small ELMs in C-Mod

Highest β_{ped}^{pol} is ~ 15% for access to small ELMs in MAST

- Small ELMs can be distinguished at the lowest heating power between Type III ELMs
- At highest heating power, small ELMs vanish, with only Large Type I ELMs left
- Small ELMs may be Type II proximity to double-null shape

Lowest β_{ped}^{pol} is ~ 15% for access to small ELMs in NSTX

20

Summary, Conclusions, and Near Term Work

- C-Mod: small ELMs observed on top of EDA H-mode
 - Sensitive to shape (triangularity, proximity to double-null)
 - Apparent power threshold: $P_{ICRF} \ge 3 \text{ MW}$
 - Appear as bursts of turbulence filaments in Gas-puff imaging
- MAST: small ELMs observed to co-exist with Type III ELMs
 - − Apparent upper power limit: 1.8 MW \leq P_{NBI} \leq 3 MW
 - Large number of rotating filaments, most of which do not detach
- NSTX: small ELMs observed both near double-null ("Type II") and also in lower-single null (Type V)
 - Type II ELMs observed in narrow heating power window
 - Type V ELMs observed in wide heating power window
 - Type II ELMs propagate downward poloidally, Type V upward
- Common $\beta_{ped} \sim 15\%$ threshold for small ELMs
 - However it's a lower limit in Cmod, NSTX; upper limit in MAST
 - $-\beta_{tot}^{ped}$ range much broader across machines
 - not the correct ordering parameter across machines
- Edge stability analysis with kinetic EFITs commencing

Poster Copies Paper EX/P6-4 (email address for PDF)

Small ELMs and Type V ELMs propagate in opposite poloidal directions

Small ELM near double-null

Type V ELM in lower single-null

Small ELMs appear as groups of detaching filaments; Pedestal top D_{α} affected in Alcator C-Mod

