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Interpretation of new experimental observations on JET, NSTX and
DIII-D requires low frequency instability studies

Strongly heated plasmas with energetic particles reveal complicated MHD
spectra with multiple instabilities
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Interpretation of new experimental observations on JET, NSTX and
DIII-D requires low frequency instability studies

Strongly heated plasmas with energetic particles reveal complicated MHD
spectra with multiple instabilities
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DIII-D ECE spectrum
shows two sets of MHD insta-
bilities:

• TAE/RSAEs and
(toroidicity-induced/reversed shear
AEs - Alfvén Cascades)

• new BAAE modes
(Beta-induced Alfvén-
acoustic Eigenmodes)

For both
• characteristic frequency is

below TAE (∼ 200kHz)

• frequency sweep start cor-
relates with rational q(t)

• indicates RS plasmas
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Strongly heated plasmas with energetic particles reveal complicated MHD
spectra with multiple instabilities
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DIII-D ECE spectrum
shows two sets of MHD insta-
bilities:

• TAE/RSAEs and
(toroidicity-induced/reversed shear
AEs - Alfvén Cascades)

• new BAAE modes
(Beta-induced Alfvén-
acoustic Eigenmodes)

For both
• characteristic frequency is

below TAE (∼ 200kHz)

• frequency sweep start cor-
relates with rational q(t)

• indicates RS plasmas

β and geodesic curvature are responsible for Alfvén-acousti c mode coupling at low fre-
quencies ⇒ has to be understood
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Motivation to study low- f instabilities

• Various *AE and a new class of instabilities called here Beta-induced
Alfvén Acoustic Eigenmode (BAAE) help to study two fundamental
MHD waves: Alfvén and acoustic (Gorelenkov, APS’06, EPS’07).
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Motivation to study low- f instabilities

• Various *AE and a new class of instabilities called here Beta-induced
Alfvén Acoustic Eigenmode (BAAE) help to study two fundamental
MHD waves: Alfvén and acoustic (Gorelenkov, APS’06, EPS’07).

• Energetic Particle (EP) driven low- f instabilities lead to radial EP
transport:

– RSAEs form
avalanches

– induce neu-
tron (EP)
losses(5%)

– BAAEs form
avalanches

– induce
losses (13%
this case)

see Fredrickson, EX/6-3, M. Van Zeeland, EX/6-2
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Motivation to study low- f instabilities (continued)

qmin from RSAEs qmin from BAAEs

(BAAE spectroscopy)(MSE)

Time(s)

(E.Fredrickson, PoP’07)

• MHD spectroscopy application to infer q-profile is confirmed by MSE in NSTX
(see also Rimini, EX/1-2 for MHD spectroscopy in JET)

• *AEs are expected in burning plasmas
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Talk outline

1. Theory of Alfvén - acoustic continuum in ideal MHD
• frequency relations of various *AE

2. Suppression of RSAE sweep in NSTX

3. Kinetic theory of Alfvén - acoustic (BAAE) continuum

4. New class of plasma instabilities called Beta - induced Alfvén -
Acoustic global Eigenmodes (BAAEs) are studied in tokamaks

5. Discussion and Summary
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Alfvén/acoustic continuum bounds global modes
D(r) = 0, [(∂rD(r)∂r −S)φ = 0]

Shear Alfvén and acoustic continuum MHD equations capture main effects
in low-β , large aspect ratio plasma, low ω∗, (Cheng, Chance, PFl ’86):

Ω2y+∂ 2
‖ y +γβ sinθ z = 0 (Al f venic) (1)

Ω2
(

1+
γβ
2

)

z+
γβ
2

∂ 2
‖ z +2Ω2sinθ y = 0 (acoustic) , (2)

where Ω ≡ ωR/vA, y≡ ξsε/q, ξs ≡ ~ξ · [B×∇ψ ]

|∇ψ |2 and z≡ ∇ ·~ξ , k̂‖ ≡ i∂‖/R.
Geodesic curvature coupling: m Alfvénic and m±1 acoustic harmonics.

ξs ξdiv−>
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‖ y +γβ sinθ z = 0 (Al f venic) (1)

Ω2
(

1+
γβ
2

)

z+
γβ
2

∂ 2
‖ z +2Ω2sinθ y = 0 (acoustic) , (2)

where Ω ≡ ωR/vA, y≡ ξsε/q, ξs ≡ ~ξ · [B×∇ψ ]

|∇ψ |2 and z≡ ∇ ·~ξ , k̂‖ ≡ i∂‖/R.
Geodesic curvature coupling: m Alfvénic and m±1 acoustic harmonics.

Various solutions exist ∗

• uncoupled acoustic (a) Ω2 = 1
2γβk2

‖R2

and Alfvénic (A) branches Ω2 = k2
‖R2 +Ω2

GAM.

• GAM s: Ω2
GAM = γβ

(

1+1/2q2
)

• modified shear Alfvén branch Ω2 = k2
‖R2/

(

1+2q2
)

ξs ξdiv−>

∗Winsor’68, Mikhailovski’75,’98, Chu’92, Zonca’96, van der Holst’00, Smolyakov’08
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Alfvén/acoustic coupling in toroidal equilibrium
(schematic)

• Alfvén (A) continuum at low frequency: Ω2 = k2
‖±1R2

• Acoustic (a) branch Ω2 = γβk2
‖±1R2/2(1+δ )
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Alfvén/acoustic coupling in toroidal equilibrium
(schematic)

• Alfvén (A) continuum at low frequency: Ω2 = k2
‖±1R2 /

(

1+2q2
)

(modified)

• Acoustic (a) branch Ω2 = γβk2
‖±1R2/2(1+δ ) is coupled via m±1

sidebands with modified Alfvén continuum (m harmonic)

____m m+1
n n

__
n

m−1

A

q

Ω
2

a

uncoupled
continuum

cylinder

⇒
m__
n

q

TAE gap ~ε

∼β
4/3

BAAE gap

RSAE

BAE gap ~ β

GAM/
BAE

BAAEs

torus

Global modes exist in A-a continuum gaps (van der Holst’00)

Lower (below TAE) gaps are due to β and geodesic curvature effects

Gorelenkov: RSAEs and BAAEs in tokamaks 7 of 21



TALK OUTLINE

1. Theory of Alfvén - acoustic continuum in ideal MHD
• MHD Alfvén - acoustic continuum is key to understand *AE

“zoology”

2. Suppression of RSAEs in NSTX

m__
n

q

TAE gap ~ε

∼β
4/3

BAAE gap

RSAE

BAE gap ~ β

GAM/
BAE

BAAEs

torus

3. Kinetic theory of Alfvén - acoustic continuum

4. Beta - induced Alfvén - Acoustic global Eigenmodes (BAAEs)
• JET
• NSTX
• DIII-D

5. Discussion and Summary
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Increasing β significantly changes RSAE spectrum evolution in
NSTX

• RSAEs historically not observed in ST typical conditions:
– NSTX regularly operates reverse-shear with β ∼ 20%, R/a = 1/0.8,

PNBI = 2−6MW.

• Increasing β (and ∇β ) reduces frequency sweep

• sweep suppression helps to reduce EP transport

• losses are observed when RSAEs form avalanches
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β suppresses RSAE sweep; ∇β upshift RSAE
frequency in NSTX

NOVA, MHD code is applied (Crocker, APS’07)

1. Increasing β elevates continuum near qmin ⇒
raises RSAE frequency towards TAE gap.

• Frequency sweep suppression is expected
when

ω2
GAM = γβω2

A >
1

4q2 ω2
A = ω2

TAE

2. Both theory and data show that ∇β contribu-
tion to the RSAE (sweep) frequency is strong
(Fu, PoP’06, Gorelenkov, PPCF’06, Gorelenkov, Sherwood’08)

∆ f∇β = fGAM

√

− r∂ β
γβ∂ r

(1−q−2) ∼ fGAM
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frequency in NSTX

NOVA, MHD code is applied (Crocker, APS’07)

1. Increasing β elevates continuum near qmin ⇒
raises RSAE frequency towards TAE gap.

• Frequency sweep suppression is expected
when

ω2
GAM = γβω2

A >
1

4q2 ω2
A = ω2

TAE

2. Both theory and data show that ∇β contribu-
tion to the RSAE (sweep) frequency is strong
(Fu, PoP’06, Gorelenkov, PPCF’06, Gorelenkov, Sherwood’08)

∆ f∇β = fGAM

√

− r∂ β
γβ∂ r

(1−q−2) ∼ fGAM

Ideal MHD codes can be used for RSAE modeling in ST conditions: high β , high ε .

Kinetic theory is required for 1) proper frequency normalization and 2) to account for
mode - continuum interaction
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TALK OUTLINE
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• MHD Alfvén - acoustic continuum is key to understand *AE

“zoology”
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• JET
• NSTX
• DIII-D

5. Discussion and Summary
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Extremum points of Alfvén - acoustic continuum
determine global mode localization

Ideal MHD (NOVA) results
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• Core localized and gap BAAEs are
found with one dominant poloidal
harmonic (Gorelenkov,PLA’07):

– monotonic q−profile (EFIT, JET),
q0 ≥ 1, qa = 4.

1. low shear sweeping BAAE (A):

ω ≃ vAk‖/
√

1+2q2
min|r=0

2. gap BAAE:
Ω+ ≃

√

γβ/2/qmin,
γ = (Te+7Ti/4)/(Te+Ti)

• ∇ξ , m±1 sidebands are present
(∼ ξθ /a).

Gorelenkov: RSAEs and BAAEs in tokamaks 12 of 21



Extremum points of Alfvén - acoustic continuum
determine global mode localization

Ideal MHD (NOVA) results

0.40 0.60.2

(a.u)
rξn

1

0

r/a

Ω
Ω

2

2
___

+
0.5

1.5

m=4 m=4

A

a

aa

A

• Core localized and gap BAAEs are
found with one dominant poloidal
harmonic (Gorelenkov,PLA’07):

– monotonic q−profile (EFIT, JET),
q0 ≥ 1, qa = 4.

1. low shear sweeping BAAE (A):

ω ≃ vAk‖/
√

1+2q2
min|r=0

2. gap BAAE:
Ω+ ≃

√

γβ/2/qmin,
γ = (Te+7Ti/4)/(Te+Ti)

• ∇ξ , m±1 sidebands are present
(∼ ξθ /a).

How MHD results hold in the presence of kinetic effects,
acoustic coupling ?
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Kinetic theory modifies MHD dispersion of BAAEs

General low frequency kinetic dispersion relation is obtained: Zonca et.al. PPCF’96,
Mikhailovskii et.al. Pl.Phys.Rep’99

Two cases are of interest for the modified
Alfvén branch (sweeping f BAAEs)
(τβi/2 = 0.25%, τ ≃ Te/Ti)

1. τ > 2ξ 2
i ≫ 1, ξi = ω/k‖±1vTi

results similar to MHD,τ = 15→

k2
‖R2

Ω2 ≃ 1+2q2

(

1+e−ξ2
i

iξ 3
i

√
π

2

)

≃ 1+2q2

2. Ti ∼ Te, ξ±i ≪ 1,

k2
‖R2

Ω2 ≃ 1+q2
(

1
2

+
π
8

)

+
iq2√π
ξs

√
2

• phase velocity is different from Alfvénic,
depends on Te/Ti .
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NSTX multiple BAAE frequency measurements confirm
kinetic dispersion

qmin is from MSE: f = fBAAE+n frot , n < 0, n = −1÷−4.

Applied modified Alfvénic dispersion with rotation frot (qmin) = 19−23kHz, ω∗n=1 ≃ 2kHz≪ fBAAE

Modified Alfvénic wave dispersion agrees better with the kinetic dispersion at Ti = Te:

fBAAE = vAk‖/2π
√

1+q2
min(1/2+π/8) vs MHD vAk‖/2π

√

1+2q2
min.
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NSTX multiple BAAE frequency measurements confirm
kinetic dispersion

qmin is from MSE: f = fBAAE+n frot , n < 0, n = −1÷−4.

Applied modified Alfvénic dispersion with rotation frot (qmin) = 19−23kHz, ω∗n=1 ≃ 2kHz≪ fBAAE

Modified Alfvénic wave dispersion agrees better with the kinetic dispersion at Ti = Te:

fBAAE = vAk‖/2π
√

1+q2
min(1/2+π/8) vs MHD vAk‖/2π

√

1+2q2
min.

Kinetics improves and complements MHD framework for BAAE st udies: i)
proper acoustic wave dispersion, ii) ion Landau damping
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TALK OUTLINE

1. Theory of Alfvén - acoustic continuum in ideal MHD
• MHD Alfvén - acoustic continuum is key to understand *AE

“zoology”

2. Suppression of RSAE sweep in NSTX

3. Kinetic theory of Alfvén - acoustic continuum

4. Beta - induced Alfvén - Acoustic global Eigenmodes
(BAAEs)

m__
n

q

TAE gap ~ε

∼β
4/3

BAAE gap

RSAE

BAE gap ~ β

GAM/
BAE

BAAEs

torus

• in JET, NSTX and DIII-D

5. Discussion and Summary
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In JET decreasing qmin results in BAAE frequency up-sweep

• Core BAAE activity is predicted to have sweeping frequency (Te ≫ Ti)
– Up-chirp is limited by the gap, Ω+ ≃

√

γβ/2/q.
– Core BAAE evolution frequency is close to modified Alfvén branch.

• Rotation is inferred frot = 2.5kHz.
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NOVA predicts gap fBAAE = 16.5kHzagainst observed 14kHz if qmin = 1.5.
⇒ only even m’s are expected: m= nqmin is integer.
Caveats: q was not measured.
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NSTX experiments with MSE study BAAE frequency
dependencies

• Low density ne ≃ 3 × 1019m−3,
PNBI = 2MW, ENBI = 90keV.

• 12channel MSE measures q pro-
file (reversed shear).

– helps to validate theory.

Gorelenkov: RSAEs and BAAEs in tokamaks 17 of 21



NSTX experiments with MSE study BAAE frequency
dependencies

• Low density ne ≃ 3 × 1019m−3,
PNBI = 2MW, ENBI = 90keV.

• 12channel MSE measures q pro-
file (reversed shear).

– helps to validate theory.

• Low frequency oscillations
(BAAEs) are seen unstable:

– Characteristic upshift frequency
evolution from zero (plasma
frame).

– Modes are localized to qmin sur-
face.

• High-k diagnostic sees BAAEs at
r/a = 0.7 (H.Park, APS’07).

Plasma
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Edge magnetic spectrum
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NOVA: BAAE broadens radially as qmin decreases
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• BAAE frequency sweeps as
q-profile relaxes.

– f does not depend on beta
(as expected) near rational
qmin (=1.5).

– ξr has one dominant har-
monic m= nqmin = 3.

• fBAAE is close to modi-
fied Alfvén branch fA =

vAk‖/2π
√

1+2q2
min

• Continuously transforms to
gap mod

• BAAEs interact with the con-
tinuum.
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Ultra SXR measures the same radial structure broadening

Raw USXR signal (∼BAAE structure, Tritz, JHU) Radial profile evolution
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Ultra SXR measures the same radial structure broadening

Raw USXR signal (∼BAAE structure, Tritz, JHU) Radial profile evolution
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BAAE broadens as qmin decreases
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For DIIID NOVA predicts BAAE frequencies with the same patterns
as measured
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• Numerically (using NOVA MHD code) BAAEs are found inside Alfvén-acoustic continuum

gaps (points) - not as sweeping modes

– this is due to strong β profile variation and shear effects

– modes interacting with the continuum are not resolved

– kinetic theory renormalization gives similar frequencies (shown as lines)

• Kinetic theory predicts Landau damping for gap BAAEs, γ/ω ≃ 25%at τ = niz2
i Te/Tine = 2

(only those frequencies are plotted).

• Uncertainties (n numbers) do not allow more accurate frequency comparison
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Conclusions

1. RSAEs frequency sweep is suppressed in NSTX at high pressure
when fGAM ≥ fTAE.
• ideal MHD describes sweep suppression

2. New low frequency BAAE modes are observed and studied within
MHD and kinetic theory.
• global modes exist in geodesic curvature induced Alfvén/acoustic continuum gaps
• low-n global beta-induced Alfvén/acoustic eigenmodes - BAAE are found numerically,

• BAAE frequency is 0 < Ω <
√

γβ/2/qmin vs. Ω =

√

γβ
(

1+1/2q2
min

)

for BAE/GAM.

3. Kinetic modification of MHD theory is important for BAAEs
• ion Landau damping of the gap BAAEs γ/ω < 25% is expected if Te/Ti > 2.
• NSTX results show good agreement between measured frequency and kinetic theory.

4. Due to coupling to acoustic branch thermal ions are expected to
interact strongly:
• strong fast ion drive and strong damping on thermal ions,
• potential for energy channeling from beam ions directly to thermal ions

(α-channeling, Fisch, PRL’93, hot-ion mode, LiWall).

5. Both RSAEs and BAAEs can be used to infer qmin values.
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