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Outline

» Motivation and special features of NSTX plasmas that test theory

— Is there any difference in momentum transport between electron- and ion-
dominated regimes?

 Steady-state momentum transport studies (v,;,., assumed to be 0)
— Momentum transport anomalous even when ion heat transport neoclassical

* Perturbative momentum transport studies

— Vyinch Significant and consistent with predictions from theories based on low-k
turbulence

6 External

Control Coils 48 Internal

By, B sensors

External control coils used to actively
compensate error fields, resistive
wall modes (RWM) and for ELM pacing

Sabbagh et al. EX5-1
Canik et al., PD

Applied n=3 fields used to change the
plasma rotation (both steady-state and
transiently)

Copper
stabilizing plates
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NSTX Typically Operates in an Electron-Dominated Regime

« High rotation (M ~ 0.5) and rotational shear observed in
NSTX

— ExB shear values of up to 1 MHz can exceed ITG/TEM
growth rates by a factor of 5 to 10

 Reduction of low-k turbulence

— lon energy transport in H-modes typically
neoclassical

 Transport losses dominated by electrons

« External control coils (ECC) provide a tool to study
the effect of rotation and rotation shear on transport
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lon Transport Tightly Coupled to Rotation, Rotation Shear

lon thermal diffusivity decreases with increasing rotation shear
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Effective Momentum Diffusivity Usually Greater than lon
Thermal Diffusivity in All Operating Regimes

. Xq)eff inferred from steady-state momentum balance: implicit

assumption that v
— Find y,*" < x; for both L- and H-modes
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- Statistical coupling between y; and x¢eff observed only in outer region
- Consistent with results from higher aspect ratio tokamaks
* No statistical coupling of y, and x,*" at any radius (y.>>x,")
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(What Controls y,?)
Momentum Transport is Always Anomalous

Diffusivity (m2/s)
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Is x, controlled by low-k turbulence?

Perturbative experiments can help determine this
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Application of NBI and n=3 Braking Pulses Lead to
Perturbative Change in Rotation

« Core most affected by NBI pulses

— Change in torque localized to r/ » QOuter region immediately
a<0.3 affected by n=3 braking pulses
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Perturbative Momentum Transport Analysis Reveals
Significant Inward Pinch in Outer Region of Plasma

 Toroidal rotation evolves

according to momentum balance ‘\i

— Rotation measured by CHERS g

— NBI torque only one considered &

«  Momentum flux governed by p
o

T, = mnR| x, —2 -V, V" =

o

VT convection
diffusion

(Residual stress assumed to be 0)
 vandvv have to be decoupled to

determine y, and v
independently

— This requirement is satisfied in
outer portion and in a limited
spatial region in the core

(Solomon et al., PRL ’08)

pinch

Toroidal Pinch Velocity (m/s)
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Calculated Pinch Velocities Agree Reasonably Well With
Theories Based on Low-k Turbulence in Outer Region

« Both based on low-k, but have
dff t h oL — V= 0.65x RMSE = 4.21
Ifrerent approacnes [ ——y=1.08x RMSE=6.77 g
— End up with similar expressions ol Rmaj=1.3-1.4;m -
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(Why do theories differ at high v;,.,?)
The Density Gradient Scale Length Term Matters

Vp,nch (m/s)
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(Why does theory match in outer region better than in core?)
ITG/TEM Modes Unstable in Outer Region, Stable in Core

* Vi COnsistent with low-k turbulence theory predictions (Peeters, Hahm)
In outer region but not in core

— In core, much smaller v, ,than predicted by low-k turbulence theories

 Linear GS2 BES to measure low-k
turbulence will be implemented

in 2009

Physics governing momentum
transport/pinch appears to be
: ] similar between low A, electron-
1L ] dominated and high-A, ion-

3 — Core | | dominated regimes (in outer
L ITG/TEM —& Outer | ; region)

O , I I L L
0 02 04 06 08 1.0

Growth Rate (104 rad/s)

k()p S
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Conclusions (l)

« Momentum transport anomalous even when ion thermal
transport is near neoclassical
— Something other than collisions must be driving momentum transport

« Perturbative experiments indicate that the inward pinch can
be significant and consistent with predictions from theories
based on low-k turbulence
— Agreement using simple formulae surprisingly good!

— Inclusion of pinch brings ensemble of y, closer to x;: <Pr>=0.5-0.8

— Results suggest similar physics is driving momentum transport across
a range of transport regimes

— Points to the importance of performing experiments in different
operating regimes to “stress test” theories
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Conclusions (ll)

« Comparisons to theory are just beginning
— Residual stress [Gurcan et al., PoP, 2007] not taken into account
— Gyrokinetic calculations needed to determine v, more accurately
— What drives momentum transport in core?

» Theories are still in early stages of development
— Validity in low-R/a, electron-dominated regimes
— Role of kinetic electrons, electron-scale turbulence

« Momentum transport can be a better indicator of low-k turbulence than
energy transport in these electron-dominated regimes

— Neoclassical energy flux is high and dominates turbulence-induced fluxes for
ions (typical H-modes)

— Turbulence dominates momentum flux since neoclassical momentum flux is
essentially zero
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Simple Inclusion v, Brings x, Closer to y;

* Assume v, governed by low-k turbulence for all discharges, and is
given by simple theory expressions

* Include this term in momentum balance to re-solve for a “corrected” y,
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Scatter still large

Physics governing momentum
transport/pinch appears to be
similar between low A, electron-
dominated and high-A, ion-
dominated regimes
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Introduction

« Rotation plays an important role in fusion plasmas
— Suppression of low-k microturbulence
— Internal/External MHD mode suppression

* Predictive understanding of momentum transport desirable
— ITER, CTF,....

« Studies performed in NSTX to investigate momentum
transport
— In electron-dominated plasmas at low aspect ratio
» Large ExB shear (low-k turbulence suppression/reduction?)

— What is the relation of rotation and momentum flux to energy
flux?

— What is the source of the momentum diffusivity & pinch?

@ NSTX 22 FEC - Kaye EX3-3 Oct. 13-17, 2008 15/13



Local Transport Studies Reveal Sources of Energy
Confinement Trends

Electrons primarily responsible for Variation in near-neoclassical ion
strong B scaling in NSTX (tz~B{%9) transport primarily responsible
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Slight Effect of Rotation/Rotation Shear on Stored Energy

Possibly some small effect on fast ions
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Rotation shear is acting on a small part of plasma
— improvement may be limited to that region
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High Rotation (M ~0.5) and Rotational Shear Observed in
NSTX

« ExB shear values of up to 1 MHz can 108 ¢
exceed ITG/TEM growth rates by a 21289 1
- - -phase 1
factor of 5to 10 - - <ETG> ]
— SuppreSSion or reduction of low-k L WO 0 00000 00 000000008
turbulence ) & | ;| ©6ShearngRate (s
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Effect of Rotation and Rotation Shear on Global Confinement/
Local Transport

 Motivation

— Study whether rotation or rotation shear has an effect on global
confinement and/or local transport

« Approach

— Use n=3 applied fields to slow plasma down and establish new
rotational equilibrium

6 External

Control Coils 48 Internal
By, B sensors
External control coils used to actively
compensate error fields and resistive
wall modes (n=1 to 3, and mixed [
mode)
Copper "%
stabilizing plates S
\«
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Rotational Equilibria Were Established at Various Levels of n=3 Braking
Fields

RWM coil 1 current per turn Shots: 129911 129907 129909 129912 129916 - 15 mg/mln LI’ n=1 aCtive mOde COntrO|
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— Improvement may be spatially limited VO (10° radiseclom)  @r/a~0.7
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Linear Gyrokinetic (GS2) Calculations Indicate Increasing
Suppression of Low-k Turbulence by ExB Shear

we, g >> Vi fOr high Q, VQ case
~ v, for low Q, VQ case

« Consistent with result that
Xil%i neo d€Creases with
increasing rotation shear

—  Xi/Xineo™ 1.2 for max shear
- 10° 3 ; — Xl Xineo™ 3.9 for min shear
2
S
E [ [
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8
O _
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KoPs
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Thermal Diffusivities Decrease with
Increasing Rotation Shear (Most Notably yx)
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Pinch velocities in core generally much less than those near
the plasma edge

|, scan B, scan

‘v’g"":" (m/s)
| ]
=
[

\"3"“" (m/s)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
P P

X# Vpinch @l €ach position not all equally valid (depends on v,, Vv, decoupling)

Not clear if there is a controlling current and/or field dependence to x,, V.., variation
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Thermal Diffusivities Correlate with
Rotation and Rotation Shear
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X, Decreases With Increasing B; at Some Outer Locations
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Effects of Magnetic Braking Seen Across Profile in
Equilibrium

Decrease in rotation across profile Variation in rotation shear seen
mainly in outer portion of plasma
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Inclusion of Momentum Pinch Leads to Better y,, x; Correlation

in the Outer (Gradient) Region
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- Assume either Peeters and Hahm pinch using measured Vv and L
- Compute “corrected” y,
- Large scatter remains; still no ., %o correlation

102_ 1 I 1111111 1 1111111 1 Ll 1111
1= L-mode Assumingv_  Feeles
1® H-mode P
1 .
1 .
10 _§ ° " oo, .. o . 3
= o8 " LJ
f‘, ﬂo e ©
100 - - " -
5 D R E
] o . <Pr>~0.5-0.8 ¢
o i
(D/D )2 =065 [
10-1 lll T IIII aI T LA
102 1 1 1 1[ 11 |||
1w L-mode Assuming v "™
1e® H-mode
- ..
101 . . B
] ¢ . ‘o.?. S0 o
S
- o *® "m on o
100 . " e F
e *° . F
] o .o -
] ] " (@)'?=065 |
10- T T Illlll[ T T IIIIIII T T T T 1117
10" 100 107 102
%y (M?/s)

@ NSTX

22" FEC - Kaye EX3-3

Oct. 13-17, 2008

27113



