

Supported by

The dependence of H-mode energy confinement and transport on collisionality in NSTX

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNI Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Stanley M. Kaye S. Gerhardt, W. Guttenfelder, R. Maingi, R. Bell, A. Diallo, B. LeBlanc, M. Podesta

and the NSTX Research Team

24th IAEA, FEC San Diego, CA 8-13 October 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA. Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

H-mode confinement scales differently in two wall conditioning scenarios used in NSTX

LITERs aimed toward the graphite divertor. Shown are 1/e widths of the emitted distribution.

Li remains outside the main plasma (Podesta EX/P3-02) NSTX has used HeGDC+boronization as well as lithium evaporation for wall conditioning

- Strong B_T , weak I_p scaling with HeGDC+B
- H_{98v,2} scaling trends with Li evaporation

Kaye (2007), Gerhardt (2011)

Can the difference in dimensional parameter scalings be reconciled?

We find that:

- Discharges using lithium evaporation generally have lower collisionality
- Collisionality unifies the scalings: Strong increase of normalized confinement time with decreasing v^*
 - Favorable implications for ST-based Fusion Nuclear Science Facility (FNSF)
- Collisionality decreases primarily due to broadening of the electron temperature profile
- The reasons for the strong scaling with collisionality will be explored in this talk
 - Global scaling
 - Profile and transport changes (in both e^- and i^+) with collisionality
 - Results from linear gyrokinetic calculations

Two methods were used to change collisionality in NSTX H-mode discharges

Results will be reported from both:

- Vary I_p , B_T at constant I_p/B_T (fixed Li evap + no Li evap): Nu scan
 - Type V (small) ELMs that have minimal impact on confinement
 - q, β vary strongly: constrain dataset to limited q and β ranges for analysis
- Vary amount of between-shots Li evaporation (fixed $I_p \& B_T$): Li scan
 - Type I ELMS (little Li evap): choose analysis times to be inter-ELM
 - No ELMs (large Li evap)
 - I_p , B_T , q, $<\beta>$, κ , constant for all discharges
 - Choose analysis times to have $P_{rad}/P_{heat} < 20\%$
- For both scans, choose analysis times during steady periods

A strong dependence of global confinement on between-shot Li deposition and collisionality is prominent in the Li Scan

- Strong increase in total thermal and electron confinement
- Factor of five decrease in collisionality
- Strong and favorable dependence of τ_E with decreasing collisionality
 - Implications for FNSF (will operate at over one order of magnitude lower v_{ϵ}^{*})

Maingi et al. PRL (2011), EX/11-2

 $x = [\Phi/\Phi_a]^{1/2}$

Not all dimensionless variables are fixed across the range of v^*

Need to normalize confinement trends by ρ^{\ast} variation

Dependence on v^* even stronger when ρ^* variations are taken into account

- Express confinement scaling in terms of dimensionless parameters $\Omega \tau_E = B \tau_E = \rho^{*\alpha} f(v, \beta, T_e/T_i, \kappa, q,)$ where $\alpha = -2$ for Bohm and $\alpha = -3$ for gyroBohm scaling
 - NSTX HeGDC+B discharges found to be consistent with gyroBohm (Kaye, 2006)
- For the Li scan, B, q, $<\beta>$, κ , a ... constant for all discharges

Normalize τ_E further by $\rho^{*\alpha}$: test both Bohm and gyroBohm

Strong dependence of normalized confinement on v* also in "Nu scan"

• Constrain data to $q_{a/2}$ = 2-2.5 and $<\beta_T>$ = 8.5-12.5%

ITER98y,2 v^* scaling weak

n_e and Z_{eff} variations do not control the variation of v^*

 Would expect a linear dependence between parameter pairs if they were controlling factors (v* ~ n_eZ_{eff})

The variation in T_e and T_e profile broadness is the fundamental reason v^* (and ρ^*) varies

 $v^* \sim 1/T_e^2$

T_e broadening reflects a strong reduction in electron transport with decreasing collisionality in the outer region of the plasma

• This can be seen in both χ_e and χ_e/χ_{GB} , where $\chi_{GB} \sim \rho_s^2 c_s/a$

Curves color coded relative to value over full range of collisionality

There is a general <u>increase</u> of <u>anomalous</u> ion transport in outer regions with decreasing collisionality

- The dependences are more complicated
 - Overall increase in $\chi_i/\chi_{i,neo}$ with decreasing collisionality, but there is large scatter even at similar $\nu_e^{\ *}$
 - ~Neoclassical (NCLASS) ion transport at lowest collisionality
 - (factor of ~2 uncertainty in $\chi_i/\chi_{i,neo}$)
 - Ion transport also correlated with rotation shear

Now look at microstability properties of plasmas at high- and low-k

High-k ETG becomes more stable for lower collisionality discharges

Comparison of experimental R/L_{Te} to analytic ETG critical gradient (Jenko et al., 2001) indicates reduction of ETG drive as collisionality decreases

 Consistent with reduction in electron transport

Low-k modes show more complicated dependence

 Linear GYRO calcs indicate microtearing growth dominates low-k spectrum at high collisionality

Low-k modes show more complicated dependence

- Linear GYRO calcs indicate microtearing growth dominates low-k spectrum at high collisionality
- At low collisionality, microtearing becomes weaker
 - Consistent with reduction in electron transport going from high to low collisionality

Low-k modes show more complicated dependence

- Linear GYRO calcs indicate microtearing growth dominates low-k spectrum at high collisionality
- At low collisionality, microtearing becomes weaker
 - Consistent with reduction in electron
 transport going from high to low collisionality
- Low-k hybrid mode (TEM/KBM) predicted to exist at low collisionality
 - Consistent with increase in ion transport
 - Can provide some electron transport
- Mode growth rates near γ_{EXB} at low collisionality
 - Non-linear calculations underway to assess effect on predicted transport levels
- Li scan shows similar result

Guttenfelder TH/6-1 (next talk)

Summary and Conclusions

- Collisionality is the unifying parameter in understanding confinement trends in NSTX plasmas
- Normalized confinement shows a strong and favorable dependence with decreasing collisionality
 - Trend is even stronger when Bohm or gyroBohm variation of ρ^* is taken into account
- Improved confinement is governed primarily by reduction in electron transport in outer region
 - Broader T_e profiles with decreasing v_e^*
 - ETG, microtearing more stable going from high to low v_e^*
- Ions, however, become more anomalous going from high to low collisionality
 - Hybrid TEM/KBM mode unstable at low v_e^*
 - Need to assess respective roles of v_e^* and rotation shear
- Will be able to explore these trends at even lower collisionality (5x) with more control of the rotation profile on NSTX-U

Sign Up for Copies

Two methods were used to change collisionality in NSTX H-mode discharges

Results will be reported from both:

- Vary I_p , B_T at constant I_p/B_T (fixed Li + no Li): Nu scan
- Vary amount of between-shots Li evaporation (fixed $I_p \& B_T$): Li scan

