

Supported by



### **Edge plasma transport and microstability** analysis with lithium-coated plasma-facing components in NSTX

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

#### J.M. Canik, ORNL

W. Guttenfelder, Y. Ren, R.E. Bell, H.W. Kugel, B.P. LeBlanc (PPPL), R. Maingi (ORNL), T.H. Osborne (GA), S. Kubota (UCLA), V.A. Soukhanovskii (LLNL)

and the NSTX Research Team

24<sup>th</sup> IAEA FEC San Diego, CA 10/12/2012



Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

## Type I ELMs eliminated, energy confinement improved with lithium wall coatings



# T<sub>e</sub>, T<sub>i</sub> increased and edge n<sub>e</sub> decreased with lithium coatings



NSTX-U STX-U

IAEA FEC '12 – NSTX edge transport and microstability with lithium, Canik (10/12/2012)

### Peak pressure gradient moves inwards, p' and j reduced outside $\psi_N \sim 0.95$





#### Pre- and post-lithium discharges are modeled using SOLPS



NSTX-U

**CAK RIDGE** 

- SOLPS (B2-EIRENE: 2D fluid plasma + MC neutrals) used to model NSTX experimental data
  - ✓ Neutrals contributions
  - ✓ Recycling changes due to lithium

| Parameters adjusted<br>to fit data                              | Measurements<br>used to constrain<br>code                             |
|-----------------------------------------------------------------|-----------------------------------------------------------------------|
| Radial transport coefficients $D_{\perp}$ , $\chi_e$ , $\chi_i$ | Midplane n <sub>e</sub> , T <sub>e</sub> , T <sub>i</sub><br>profiles |
| Divertor recycling                                              | Calibrated D <sub>α</sub>                                             |
| coefficient                                                     | camera                                                                |
| Separatrix                                                      | Peak divertor heat                                                    |
| position/T <sub>e</sub> <sup>sep</sup>                          | flux                                                                  |

### **Procedure for fitting midplane n<sub>e</sub>, T<sub>e</sub>, T<sub>i</sub> profiles**

- Start with initial guess for  $D_{\perp}$ ,  $\chi_e$ ,  $\chi_i$
- Run simulation for ~10% of confinement time
- Take radial fluxes along 1-D slice at midplane from code
  - $-\Gamma^{SOLPS}$ ,  $q_e^{SOLPS}$ ,  $q_i^{SOLPS}$
- Update transport coefficients using SOLPS fluxes and *experimental* profiles
  - E.g.,  $D^{\text{new}} = \Gamma^{\text{SOLPS}}/\text{grad}(n_e^{\text{EXP}})$
  - Here we use fits to profiles used in stability calculations (Maingi PRL '09)
- Repeat until  $n_e/T_e/T_i^{SOLPS} \sim n_e/T_e/T_i^{EXP}$





### Peak $D_{\alpha}$ brightness is matched to experiment to constrain PFC recycling coefficient: lithium reduces R from ~.98 to ~.9

- For each discharge modeled, PFC recycling coefficient R is scanned
  - Fits to midplane data are redone at each R to maintain match to experiment
- $D_{\alpha}$  emissivity from code is integrated along lines of sight of camera, compared to measured values
  - Best fit indicates reduction of recycling from R~0.98 to R~0.9 when lithium coatings are applied



## Transport barrier widens with lithium coatings, broadening pedestal

- Pre-lithium case shows typical H-mode structure
  - Barrier region in D,  $\chi_e$  just inside separatrix
- Pedestal is much wider with lithium
  - $D_{\perp}$ ,  $\chi_e$  similar outside of  $\psi_N \sim 0.95$
  - Low  $D_{\perp},\,\chi_{\rm e}$  persist to inner boundary of simulation  $(\psi_N{\sim}0.8)$
- Changes to profiles with lithium are due to reduced fluxes combined with wide transport barrier
- Two regions show different transport response to lithium
  - Top of pedestal ( $\psi_N \sim 0.8-0.95$ )
    - Large transport reduction (both D and  $\chi_{e})$
  - Bottom of pedestal ( $\psi_N \sim 0.8-0.95$ )
    - Transport similar with lithium
    - T<sub>e</sub> profile is unchanged



### Reflectometry shows reduced low-k turbulence in steep density gradient region

- Pre-lithium: strong amplitude and phase fluctuations
- Post-lithium: little amplitude fluctuation
- 3D simulations using Kirchoff performed to interpret fluctuation level



**(**) NSTX-U **≹**<sup>OAK</sup> <u>RIDGE</u>

IAEA FEC '12 – NSTX edge transport and microstability with lithium, Canik (10/12/2012)

### With power reduced so T<sub>e</sub> profile matches pre-lithium case, high-k fluctuations reduced near pedestal top

- Power varied in new discharges similar to those described above
- At 2MW with lithium,  $T_e$  profile similar to 5 MW pre-lithium
- Fluctuation amplitude measured with high-k scattering reduced across measured  $\ensuremath{\mathsf{kp}_{\mathsf{s}}}$



### Microstability of the NSTX pedestal with/without lithium is studied with GS2\*

- Local, linear microstability examined with GS2 code
  - Finite collisionality and  $\beta$
  - Fully electromagnetic ( $\delta A_{\parallel} + \delta B_{\parallel}$ )
  - Kinetic electrons, D and C<sup>6+</sup> ions
- Realistic profiles and equilibria used in calculations
  - n<sub>e</sub>, n<sub>C</sub>, T<sub>e</sub>, T<sub>i</sub> from tanh profile fitting
  - Kinetically constrained equilibrium reconstructions



\*M. Kotschenreuther et al, Comput. Phys. Commun. 88 (1995) 128.

### Summary of profiles used in calculations

- Peak pressure gradient moves inward from  $\psi_{\text{N}}{=}0.96$  to  $\psi_{\text{N}}{=}0.9$  with lithium
  - Pressure pedestal broader with lithium
- Collisionality reduced with Li
- Outside  $\psi_N \sim 0.95$ 
  - a/L<sub>Te</sub> similar with/without lithium
  - a/Ln<sub>e</sub> decreased with lithium
    - $\eta_e$  increases
- Inside  $\psi_N \sim 0.95$ 
  - $a/L_{Te}$ ,  $a/L_{ne}$  increase with lithium
  - $a/L_{Ti}$ ,  $T_e/T_i$  decrease with lithium



### $\rho/L << 1$ is satisfied for electrons, not ions

- Local analysis used here for qualitative studies
  - Non-local effects will change results quantitatively for ion scales
  - Electron scales better satisfy ordering
- $\delta f/f < 1$  may also not be well satisfied
  - Will investigate using full-f approach in the future



### Radial profile of maximum low-k growth rate, freq

- Modes identified by scaling with parameters and eigenfunction parity (next slides)
- Four spatial regions evident without lithium
  - Pedestal foot ( $\psi_N$ >0.98)
    - $\gamma$  is large, >>  $\gamma_{E}$  (KBM-like)
  - Within pedestal ( $\psi_N \sim 0.96$ )
    - $\gamma$  reduced, ~  $\gamma_{\rm E}$  (TEM-like)
  - Pedestal top ( $\psi_N \sim 0.93$ )
    - $\gamma$  large, >>  $\gamma_{E}$  (Microtearing)
  - Core (ψ<sub>N</sub><0.9)</li>

**CAK RIDGE** 

NSTX-U

- ITG dominant,  $\gamma_E$  small
- γ profile has similar structure with lithium
  - Regions are broader (pedestal widens)
  - Edge modes are always TEM/KBM hybrid



### Density gradient is stabilizing to MT modes dominant at pedestal-top without lithium

- Increasing a/L<sub>ne</sub> stabilizes MT
  - TEM becomes dominant, with reduced γ
- If magnetic geometry is held fixed, KBM onset occurs at high a/L<sub>ne</sub>
- With pressure gradient in geometry scaled consistently
  - No KBM onset
  - a/L<sub>ne</sub> continues to be stabilizing
- Decreasing collisionality is weakly destabilizing at these parameters

**CAK RIDGE** 

NSTX-U



## Increasing pressure gradient is stabilizing, has the strongest impact on growth rates with lithium

- Parameter scaling either done 'individually' or 'consistently'
  - Individual: only a/L<sub>Te</sub>, or d $\beta$ /dr scaled, all else fixed
  - Consistent: d $\beta$ /dr scaled with a/L<sub>Te</sub>,  $\beta_e$  with d $\beta$ /dr
- Increasing a/L<sub>Te</sub> alone
  - Destabilizing (TEM-like)
  - KBM onset at high gradients
- Increasing a/L<sub>Te</sub> consistently
  - No KBM, weak effect on  $\gamma$
- dβ/dr alone:

**CAK RIDGE** 

NSTX-U

- Pressure gradient strongly stabilizing
- KBM dominant at dβ/dr modestly below experiment
- $\beta_e$  scaled consistently with d $\beta$ /dr
  - No KBM observed; always TEM
  - Stabilization with dβ/dr much weaker



#### Ideal ballooning stability has been calculated

- 'Ball' module of GS2 used to calculate infinite-n stability
- Equilibrium from g-file used (kinetic efits, same as for GK calcs)
- Pressure gradient and shear are varied using Bishop relations for local equilibrium so stability boundary can be contoured



#### rhoc= 0.900000

NSTX-U

**CAK RIDGE** 

### Summary of ideal ballooning results

- 'Most' of the pedestal is ballooning stable
  - Very edge is close to boundary, but not the peak pressure gradient region
- Stability is due to shear being less than the minimum required to reach stability boundary
  - Increasing  $\beta$ ' won't get you there
  - Error in shear could get you close, but even then the measured β' is a factor of two higher than first stability boundary (in pre- lithium case)
- Implies KBM onset must occur at lower shear than ideal for it to be limiting instability

- In plots below,  $\beta$ ' at first and second stability boundaries are calculated at fixed s
- The minimum-shear point of the boundary is then calculated;  $\beta$ ' at this point is plotted in upper frames, and s is shown on the bottom



IAEA FEC '12 - NSTX edge transport and microstability with lithium, Canik (10/12/2012)

### GS2 is used to calculate KBM stability

- 129038 (post-lithium),  $\psi_{N}$ =0.94
  - Within pedestal; peak p' is at  $\psi_N \sim 0.91$
- β<sub>e</sub> of profiles, β' in equilibrium scaled selfconsistently
  - s\_hat set to 15 so first and second stability boundaries are clear
- KBM is unstable in ideally unstable region
  - Positive real frequency indicates KBM (checked via real/imag  $\delta A_{\parallel}$  phasing)
  - KBM onset and stabilization difficult to make out
    - sub-dominant near the ideal boundaries
    - Eigenvalue solver would clarify

NSTX-U

**CAK RIDGE** 

- Most unstable ky shifts from ~0.2 near first boundary to ~0.1 closer to second boundary
- Increasing pressure gradient is stabilizing even within the ideally unstable region, not far past 1<sup>st</sup> stability boundary



IAEA FEC '12 – NSTX edge transport and microstability with lithium, Canik (10/12/2012)

### Kinetic ballooning stability tracks ideal

- GK calculations show **KBM-unstable space** very similar to ideal
- Smooth transition from TEM to KBM
  - No jump in  $\omega_r$
  - Hybrid TEM/KBM
- At NSTX operating point, pressure gradient is stabilizing
  - On second stable side
  - Can KBM clamp p'?
- Non-local effects are likely important

**CAK RIDGE** 

NSTX-U

May close off second \_ stability, similar to finite-n ideal MHD

129038 (post-lithium)  $\psi_{N}=0.94$  $k_{\theta}\rho_{s}=0.2$ 



IAEA FEC '12 – NSTX edge transport and microstability with lithium, Canik (10/12/2012)

S

### **ETG modes are unstable near the separatrix**

- ETG is calculated to be unstable at plasma edge ( $\psi_N > 0.95$ )
- Growth rates significantly
  higher with lithium
  - a/L\_{ne} is reduced, while a/L\_{Te} is unchanged
  - $\ \Rightarrow \! \eta_e$  increases from ~1.5 to ~2
- Could play a role in keeping T<sub>e</sub> profile clamped at edge
  - Important for P-B stability
- Nonlinear simulations ongoing to test if ETG transport is significant



### **Summary/conclusions/future work**

- Two edge regions identified by 2D interpretive modeling of NSTX discharges without and with lithium
  - Near-separatrix ( $\psi_N$ >0.95): T<sub>e</sub> clamped  $\Rightarrow$  pressure gradient reduced with density when lithium is deposited (important for ELM stability)
  - Pedestal-top ( $\psi_N \sim 0.8-0.95$ ): transport reduced with lithium (contributes to energy confinement increase)
- Microtearing is dominant at pedestal-top without lithium, is stabilized by the increased density gradient with lithium
  - Dominant mode becomes TEM/KBM hybrid, with growth rate on order of ExB shear rate over wider region
- ETG is destabilized with lithium

**(D)** NSTX-U

**CAK RIDGE** 

- Could play a role in observed  $T_e$  stiffness
- Need nonlinear simulations to test plausibility
- KBM is in second-stable region over most of the pedestal
  - But non-local effects could be important

#### **EXTRA SLIDES FOLLOW**



### Pre-lithium E×B shear is determined from measured V<sub>t</sub>, P<sub>C6+</sub> profiles

- Carbon toroidal rotation, pressure profiles used to estimate E<sub>r</sub>
  - Poloidal rotation contribution small in other discharges (B<sub>t</sub>~B<sub>p</sub>) (Maingi, PRL '10)
- Shear rate calculated using two expressions
  - Waltz-Miller

$$\gamma_E = \frac{r}{q} \frac{\partial}{\partial r} \frac{E_R}{RB_p}$$

- Hahm=Burrell

$$\gamma_E = \frac{\left(RB_p\right)^2}{B} \frac{\partial}{\partial \psi} \frac{E_R}{RB_p}$$

- Shear rate is largest within pedestal region
  - Narrow region with substantial pressure contribution



(∭) NSTX-U ¥<sup>OAK</sup> RIDGE

IAEA FEC '12 – NSTX edge transport and microstability with lithium, Canik (10/12/2012)

#### Region with large E×B shear becomes wider with lithium

- Values outside ψ<sub>N</sub>~0.95 are extrapolations
- V<sub>t</sub>, dV<sub>t</sub>/dr are larger than pre-lithium case
- Pressure gradient gives significant contribution to  $\gamma_{\rm E}$  over a wider radial range

NSTX-U

**CAK RIDGE** 



#### Results are converged with grid size and time step

- $N_{\theta} = 72$  works well in all cases
- $\Delta t \leq 0.01$ , depends on radius (varies with  $\gamma$ ,  $\omega_r$ )
  - Also converged for dominance of two competing modes



₩ NSTX-U