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Type I ELMs eliminated, energy confinement improved with 

lithium wall coatings 
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Without Li, With Li 

 
ELM-free, reduced 

divertor 

recycling 
 

Lower NBI to avoid 

β limit 

 

Similar stored 

energy 

 

H-factor 40% 

 

H. Kugel, PoP 2008 

R. Kaita, IAEA 2008 

M. Bell, PPCF 2009 
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Te, Ti increased and edge ne decreased with lithium 
coatings  

No lithium 

With lithium 

separatrix 
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Peak pressure gradient moves inwards, p’ and j reduced 

outside ψN~0.95 
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Pre- and post-lithium discharges are modeled using SOLPS 

• SOLPS (B2-EIRENE: 2D fluid 

plasma + MC neutrals) used to 

model NSTX experimental data 

 Neutrals contributions 

 Recycling changes due to lithium 

 

IR Camera 

Dα Camera 
 

     

TS, CHERS 

SOLPS Grid 

Parameters adjusted 

to fit data 

Measurements 

used to  constrain 

code 

Radial transport 

coefficients D┴, χe, χi 

Midplane ne, Te, Ti 

profiles 

Divertor recycling 

coefficient 

Calibrated Dα 

camera 

Separatrix 

position/Te
sep 

Peak divertor heat 

flux 
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Procedure for fitting midplane ne, Te, Ti profiles 

• Start with initial guess for D┴, χe,χi 

• Run simulation for ~10% of 
confinement time 

• Take radial fluxes along 1-D slice at 
midplane from code 
– ΓSOLPS, qe 

SOLPS, qi 
SOLPS  

• Update transport coefficients using 
SOLPS fluxes and experimental 
profiles 
– E.g., Dnew = - ΓSOLPS/grad(ne

EXP) 

– Here we use fits to profiles used in 
stability calculations (Maingi PRL ’09) 

• Repeat until ne/Te/Ti
SOLPS ~ ne/Te/Ti

EXP 
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Peak Dα brightness is matched to experiment to constrain 

PFC recycling coefficient: lithium reduces R from ~.98 to ~.9 

• For each discharge modeled, PFC recycling coefficient R is scanned 

– Fits to midplane data are redone at each R to maintain match to experiment 

• Dα emissivity from code is integrated along lines of sight of camera, 

compared to measured values 

– Best fit indicates reduction of recycling from R~0.98 to R~0.9 when lithium 

coatings are applied 

Measured value 

SOLPS 

Pre-lithium Post-lithium 

Measured value 

SOLPS 
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Transport barrier widens with lithium coatings, broadening 

pedestal 

• Pre-lithium case shows typical H-mode structure 

– Barrier region in D, χe just inside separatrix 

• Pedestal is much wider with lithium 

– D┴, χe similar outside of ψN~0.95 

– Low D┴, χe persist to inner boundary of simulation 

(ψN~0.8) 

• Changes to profiles with lithium are due to reduced 

fluxes combined with wide transport barrier 

 

• Two regions show different transport response to 
lithium 
– Top of pedestal (ψN~0.8-0.95) 

• Large transport reduction (both D and χe) 

– Bottom of pedestal (ψN~0.8-0.95) 

• Transport similar with lithium  

• Te profile is unchanged 
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Reflectometry shows reduced low-k turbulence in steep 

density gradient region 

• Pre-lithium: strong amplitude and phase fluctuations 

• Post-lithium: little amplitude fluctuation 

• 3D simulations using Kirchoff performed to interpret fluctuation 
level 
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Without Lithium 

With Lithium 
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With power reduced so Te profile matches pre-lithium case, 

high-k fluctuations reduced near pedestal top 

• Power varied in new discharges similar to those described above 

• At 2MW with lithium, Te profile similar to 5 MW pre-lithium 

• Fluctuation amplitude measured with high-k scattering reduced across 
measured kρs  

10 

Without Lithium 

With Lithium 

Without Lithium 

With Lithium 
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Microstability of the NSTX pedestal with/without lithium is 

studied with GS2* 

• Local, linear microstability examined with GS2 code 

– Finite collisionality and  

– Fully electromagnetic (A|| + B||) 

– Kinetic electrons, D and C6+ ions 

*M. Kotschenreuther et al, Comput. Phys. Commun. 88 (1995) 128. 

• Realistic profiles 

and equilibria used 

in calculations 

– ne, nC, Te, Ti from 

tanh profile fitting 

– Kinetically 

constrained 

equilibrium 

reconstructions 
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Summary of profiles used in calculations 

• Peak pressure gradient moves 

inward from N=0.96 to N=0.9 

with lithium 

– Pressure pedestal broader with 

lithium 

• Collisionality reduced with Li 

• Outside N~0.95 

– a/LTe similar with/without lithium 

– a/Lne decreased with lithium 

• e increases 

• Inside N~0.95 

– a/LTe, a/Lne increase with lithium 

– a/LTi, Te/Ti decrease with lithium 
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Without Lithium 

With Lithium 
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/L << 1 is satisfied for electrons, not ions 

• Local analysis used here for qualitative studies 
– Non-local effects will change results quantitatively for ion scales 

– Electron scales better satisfy ordering 

• f/f<<1 may also not be well satisfied 
– Will investigate using full-f approach in the future 
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Radial profile of maximum low-k growth rate, freq 

• Modes identified by scaling with 

parameters and eigenfunction parity (next 

slides) 

• Four spatial regions evident without 

lithium 

– Pedestal foot (N>0.98) 

•  is large, >> E (KBM-like) 

– Within pedestal (N~0.96) 

•  reduced, ~ E (TEM-like) 

– Pedestal top (N~0.93) 

•  large, >> E (Microtearing) 

– Core (N<0.9) 

• ITG dominant, E small 

•  profile has similar structure with lithium 

– Regions are broader (pedestal widens) 

– Edge modes are always TEM/KBM hybrid 
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ITG 

MT 

TEM 

KBM 

TEM/KBM 

MT 
E 
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Density gradient is stabilizing to MT modes dominant at 

pedestal-top without lithium 

• Increasing a/Lne stabilizes 

MT 

– TEM becomes dominant, 

with reduced  

• If magnetic geometry is 

held fixed, KBM onset 

occurs at high a/Lne 

• With pressure gradient in 

geometry scaled 

consistently 

– No KBM onset 

– a/Lne  continues to be 

stabilizing 

 

• Decreasing collisionality is 

weakly destabilizing at 

these parameters 
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Eigenfunction parity changes  

with dominant mode type 

MT 

TEM 

KBM 

d/dr constant 

d/dr scaled with a/Lne 

w/o Li w/ Li 

N=0.93 
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Increasing pressure gradient is stabilizing, has the strongest 

impact on growth rates with lithium 

• Parameter scaling either done ‘individually’ or ‘consistently’ 

– Individual: only a/LTe, or d/dr scaled, all else fixed 

– Consistent: d/dr scaled with a/LTe, e with d/dr  

16 

N=0.93 

• Increasing a/LTe alone 

– Destabilizing (TEM-like) 

– KBM onset at high gradients 

• Increasing a/LTe consistently 

– No KBM, weak effect on  

• d/dr alone: 

– Pressure gradient strongly stabilizing 

– KBM dominant at d/dr modestly 

below experiment 

• e scaled consistently with d/dr 

– No KBM observed; always TEM 

– Stabilization with d/dr much weaker 

a/LTe only 

a/LTe+’ 

’ only 

’ + 
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Ideal ballooning stability has been calculated 

• ‘Ball’ module of GS2 used to calculate infinite-n stability  

• Equilibrium from g-file used (kinetic efits, same as for GK calcs) 

• Pressure gradient and shear are varied using Bishop relations 

for local equilibrium so stability boundary can be contoured 
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Summary of ideal ballooning results 

• ‘Most’ of the pedestal is ballooning 

stable 

– Very edge is close to boundary, 

but not the peak pressure gradient 

region 

• Stability is due to shear being less 

than the minimum required to 

reach stability boundary 

– Increasing ’ won’t get you there 

– Error in shear could get you close, 

but even then the measured ’ is 

a factor of two higher than first 

stability boundary (in pre- lithium 

case) 

• Implies KBM onset must occur at 

lower shear than ideal for it to be 

limiting instability 

 

 

 

129015 (pre-lithium) 129038 (post-lithium) 

• In plots below, ’ at first and second stability 
boundaries are calculated at fixed s 

• The minimum-shear point of the boundary is 
then calculated; ’ at this point is plotted in 
upper frames, and s is shown on the bottom 
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GS2 is used to calculate KBM stability 

• 129038 (post-lithium), N=0.94 

– Within pedestal; peak p’ is at N~0.91 

• e of profiles, ’ in equilibrium scaled self-

consistently  

– s_hat set to 15 so first and second stability 

boundaries are clear 

• KBM is unstable in ideally unstable region 

– Positive real frequency indicates KBM (checked 

via real/imag A|| phasing) 

– KBM onset and stabilization difficult to make out 

• sub-dominant near the ideal boundaries 

• Eigenvalue solver would clarify 

– Most unstable ky shifts from ~0.2 near first 

boundary to ~0.1 closer to second boundary 

– Increasing pressure gradient is stabilizing even 

within the ideally unstable region, not far past 1st 

stability boundary 

2nd stab 

1st stab 

0.2, 0.1 
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Kinetic ballooning stability tracks ideal 

• GK calculations show 

KBM-unstable space 

very similar to ideal 

• Smooth transition from 

TEM to KBM 

– No jump in r 

– Hybrid TEM/KBM 

• At NSTX operating 

point, pressure 

gradient is stabilizing 

– On second stable side 

– Can KBM clamp p’? 

• Non-local effects are 

likely important 

– May close off second 

stability, similar to 

finite-n ideal MHD 
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129038 (post-lithium) 

N=0.94 

ks=0.2 
Ideal boundary 
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ETG modes are unstable near the separatrix 

• ETG is calculated to be 

unstable at plasma edge (N > 

0.95) 

• Growth rates significantly 

higher with lithium 

– a/Lne is reduced, while a/LTe is 

unchanged 

– e increases from ~1.5 to ~2 

• Could play a role in keeping Te 

profile clamped at edge 

– Important for P-B stability 

• Nonlinear simulations ongoing 

to test if ETG transport is 

significant 
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ks  10.0 

Without Lithium 

With Lithium 



IAEA FEC ‘12 – NSTX edge transport and microstability with lithium, Canik (10/12/2012) NSTX-U 

Summary/conclusions/future work 

22 

• Two edge regions identified by 2D interpretive modeling of 

NSTX discharges without and with lithium 

– Near-separatrix (N>0.95): Te clampedpressure gradient reduced 

with density when lithium is deposited (important for ELM stability) 

– Pedestal-top (N~0.8-0.95): transport reduced with lithium 

(contributes to energy confinement increase) 

• Microtearing is dominant at pedestal-top without lithium, is 

stabilized by the increased density gradient with lithium 

– Dominant mode becomes TEM/KBM hybrid, with growth rate on order 

of ExB shear rate over wider region 

• ETG is destabilized with lithium 

– Could play a role in observed Te stiffness 

– Need nonlinear simulations to test plausibility 

• KBM is in second-stable region over most of the pedestal 

– But non-local effects could be important 
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EXTRA SLIDES FOLLOW 
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Pre-lithium EB shear is determined from measured Vt, PC6+ 

profiles 

• Carbon toroidal rotation, pressure 

profiles used to estimate Er 

– Poloidal rotation contribution small 

in other discharges (Bt~Bp) 

(Maingi, PRL ’10) 

• Shear rate calculated using two 

expressions 

– Waltz-Miller 

 

 
 

– Hahm=Burrell 

 

 

• Shear rate is largest within 

pedestal region 

– Narrow region with substantial 

pressure contribution 
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Region with large EB shear becomes wider with lithium 

• Values outside N~0.95 are 

extrapolations 

 

• Vt, dVt/dr are larger than 

pre-lithium case 

 

• Pressure gradient gives 

significant contribution to E 

over a wider radial range 
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Results are converged with grid size and time step 

• N = 72 works well in all cases 

• t  0.01, depends on radius (varies with , r) 

– Also converged for dominance of two competing modes 

 

NE=16 

 

N=41 
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