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Abstract

Understanding the pedestal structure is important for achieving high 
performance pedestals necessary for maximum core fusion gain in 
ITER and future next-step devices. The stability of the pedestal is 
characterized in high performance discharges in National Spherical 
Torus Experiment (NSTX). In addition, the spatial structure of 
turbulence present during an ELM cycle in the pedestal region 
indicates spatial scales k⊥ρiped ranging from 0.2 to 0.7 propagating in 
the ion diamagnetic drift direction at the pedestal top. These 
propagating spatial scales are found to be poloidally elongated and 
consistent with ion-scale microturbulence. Linear gyrokinetic 
simulations using GENE indicate the presence of hybrid ITG/KBM-
TEM modes at the pedestal top. Nonlinear gyrokinetic simulations -- 
XGC1 -- find localized fluctuations agreeing with experimental level 
radial and poloidal correlation lengths.

This work is supported by U.S. Dept of Energy contracts DE-AC02-09CH11466.
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Dedicated experiments to vary the pedestal pressure height and 
width through Ip scans were performed on NSTX 

Constant injected power (PNBI) and magnetic field (BT)
Lower single null slightly downward and fixed high triangularity shaping.

3

Large drop (up to 15%) of stored energy (Wmhd) after each ELM crash.
- Loss of pedestal stored energy ~ 25% - 40%

Implicitly generating scans of the pedestal structure.
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Radial profiles of density, temperature and velcity are composite of 
times between multiple fraction of ELMs (e.g., 50-99% ELM cycle)
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Temperature pedestal height increases during the ELM cycle while 
the density pedestal shows no convincing trend

More than a factor 
of two increase in 
pedestal 
temperature

Density pedestal 
is much less 
sensitive to the 
ELM cycle

Heat and particle 
evolutions appear 
to be decoupled 
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Pedestal width and height progressively increase during ELM 
cycle but the peak pressure gradient remains clamped 

Pedestal height increases by a factor ≤ 3
– Height scales with Ip 
Pedestal width increases independently of Ip
Gradient is clamped early in ELM cycle
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Saturation of the gradient is ubiquitous across devices, but 
different trends in pedestal height evolution are observed
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Plasma Phys. Control. Fusion 53 (2011) 115010 D Dickinson et al
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Figure 2. Evolution of the peak electron pressure gradient during the ELM cycle. The circles show
the results from ≈50 profile measurements. The diamonds show the peak pressure gradient from
the fitted profiles shown in figure 3.

Table 1. The five mtanh fit parameters for electron pressure at t = (0.1, 0.3, 0.5, 0.7, 0.9), with
uncertainties from the least squares linear fits to the evolution of these parameters during the
inter-ELM period.

t Pe,etb (ψN) 100 Pe," (ψN) Pe,ped (Pa) Pe,slope (Pa) Pe,sol (Pa)

0.1 0.988 ± 0.0009 0.527 ± 0.027 557.5 ± 40.9 0.167 ± 0.010 0.56 ± 0.31
0.3 0.986 ± 0.0008 0.606 ± 0.026 682.5 ± 39.1 0.166 ± 0.009 0.47 ± 0.29
0.5 0.983 ± 0.0009 0.686 ± 0.029 807.6 ± 43.4 0.164 ± 0.011 0.38 ± 0.30
0.7 0.981 ± 0.0011 0.766 ± 0.035 932.7 ± 52.3 0.162 ± 0.013 0.29 ± 0.34
0.9 0.979 ± 0.0014 0.846 ± 0.042 1058. ± 63.9 0.160 ± 0.016 0.20 ± 0.40

calculated electron pressure gradient is shown in figure 3(d). The increase in Pe,ped over the
ELM cycle is mainly associated with the expansion in "Pe , and only partly with a modest
increase in the pressure gradient, which increases by <20% over the ELM cycle. The high
pressure gradient pedestal region expands during the ELM cycle: the innermost surface where
dp/d#N > 10 kPa moves inwards from #N = 0.975 at t = 0.1 to #N = 0.95 at t = 0.9, while
the location of the peak pressure gradient also moves inwards from #N = 0.988 at t = 0.1
to #N = 0.978 at t = 0.9 (where t denotes normalized time during the ELM cycle). Similar
observations were made during regular type I ELM-ing periods in other plasma scenarios on
MAST, DIII-D [14] and AUG [25].

3. MHD stability limits during the ELM cycle

Measured electron temperature and density profiles were used to reconstruct MHD equilibria
to describe the edge plasma with high precision. Five such equilibria were produced to span
the ELM cycle. Pressure profiles were obtained from the ne and Te profiles of figure 3 and
model profiles for ion temperature and density, as ion measurements were not available with
sufficient temporal and spatial resolution. A uniform effective charge state, Zeff = 2 3, was

3 Zeff = 2 is consistent with typical experimental values in the MAST pedestal. The core Zeff is typically in the
range 1–1.5.
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Figure 12. Time evolution of electron pressure pedestal parameters
obtained from composite ELM cycles. Circles and triangles are
obtained from tanhfits to profiles for low (4.7 MW) and high
(6.9 MW) power cases, respectively. Solid lines are fits to data from
exponential functions discussed in the text. (a) Electron pressure
pedestal width, (b) maximum gradient of electron pressure in
pedestal and (c) electron pressure pedestal height.

mentioned difficulties of characterizing the pedestal behaviour
during the ELM cycle, the generality of these results is
not yet as well studied as for the initial ELM-free H-mode.
However, these results are thought to provide a picture of
typical recovery from an ELM and provide a framework for
further studies. In general, pedestal parameters change rapidly
in the initial recovery phase after an ELM. For longer ELM
cycles, approach to steady state may be observed in many of
the parameters. However, achievement of a complete steady
state in all parameters is rarely, if ever, observed. Another
robust feature is the tendency for the density width to increase
throughout the recovery period. There is no evidence for any
pedestal widths to decrease during this period.

4. Correlation between pedestal parameters in
ELM-free H-mode

During ELM-free periods and during the inter-ELM periods,
several parameters change in a correlated way. One physics
question is whether there is an underlying relationship between
some of these parameters. For instance, as will be discussed
in section 5.3, some theories predict that the pedestal width
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Figure 13. Waveforms from an H-mode discharge which had two
long ELM-free periods, denoted by the vertical lines. Pair of vertical
lines on the left denotes the first period, which is studied here, and
pair of vertical lines on the right denotes the second ELM-free
period for study. (a) Electron density pedestal height, (b) electron
density pedestal width measured in units of normalized poloidal
flux, (c) square root of the electron temperature pedestal height,
(d) square root of total pedestal poloidal beta (ion beta assumed
equal to electron beta) and (e) divertor Dα signal.

is related to the ion toroidal or poloidal gyroradius. In
addition, experimental measurements have shown a correlation
of various pedestal width parameters, observed just before the
ELM onset, with pedestal beta toroidal βT or beta poloidal
βp [36–40]. In this section, the temporal evolution during
the ELM-free H-mode is used to look for correlations of
#ne with nPED

e , the pedestal temperature and pedestal beta
poloidal.

A first step in this study is to look for the correlations
between these parameters in a discharge with two distinct
ELM-free periods, as shown in figure 13. The Dα signal
(figures 13(e)) shows that the ELM-free periods occurred
from ∼1490 to 1850 ms and from 2280 to 2990 ms. During
each of these periods, there were approximately monotonic

11

of fits
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Ideal ballooning stability is performed using “ball” module of GS2 during 
the last 50% of ELM cycle: Pedestal top is found to be ballooning unstable
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ELITE Peeling-ballooning mode stability 
diagram confirms that NSTX pedestal is kink-peeling unstable

Using the recent implementation of 
XGC0-bootstrap current model, the 
experimental point is in the kink/
peeling unstable region during the last 
part of the ELM cycle.
– The XGC0 current model is described 

in C-SChang TH/P4-12

– These results agree with previous 
NSTX stability analyses. 
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Equilibria around experimental point are generated by 
varying the edge pressure gradient at fixed edge current 
and vice-versa.
Stability of each equilibrium is computed using the ELITE 
MHD code

– n = 3, 6,12, 15
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NSTX measured pedestal pressure width scales like (βθ)α with exponent ranging 
from 0.8 to 1 consistent with (preliminary) predicted KBM-constrained pedestal 

In NSTX, the observed 
width is larger than 
conventional tokamaks
– NSTX pedestal width is 1.7 

and 2.4  larger than MAST and 
DIII-D & C-Mod respectively

Pedestal width scaling is 
consistent with predicted 
width for KBM constrained 
pedestal 
– “ballooning critical pedestal”-

BCP technique from EPED 
Model [Snyder Nucl. Fusion (2011)]

– Conventional tokamaks show 
an exponent of 0.5.
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Role of the edge density fluctuations on setting the 
pedestal structure during the inter-ELM phase

Pedestal gradient has been predicted to be constrained by the 
onset of kinetic ballooning mode (KBM)*
– Recent  DIIID work has shown observations of modes localized in the 

pedestal region with features similar to KBM
– KBM characterized by:

• k⊥ρi < 1 similar to ITG
• modes have radial scales of the order few cm in the pedestal region of NSTX
• fast rising growth rate increasing with electron β
• propagation in the ion diamagnetic direction.

NSTX: We look for evidence of pedestal-localized microinstabilities, 
and their correlation with the ELM cycle 

Perform gyrokinetic simulation to identify the mode at play
– Here both GENE and XCG1 are utilized. 

11

Yan PRL 107 (2011)

*Snyder PoP 9 (2002)
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BES yields characterization of density fluctuations the 
density pedestal top 
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Modest change in poloidal correlation length during the inter-ELM phase
– Poloidal correlation length corresponds to toroidal mode number (rkθ/q) n = 2 - 3
Measurements show ion scale fluctuation in the pedestal top
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BES provides measurements of the poloidal correlation length and 
poloidal velocity
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Both BES and reflectometry systems show similar broadband 
power spectra 

Fluctuations at the pedestal top during ELM cycle are broadband as 
indicated by both reflectometry and BES system
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Radial density correlation lengths at the pedestal top and  
steep gradient region

The density fluctuations are 
measured using a 16-channel 
O-mode reflectometer

Using two-point correlation the 
radial correlation function is 
determined.
- tracks the equilibrium plasma 

motion
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2D full wave simulation of correlation function inside 
pedestal region reproduces measurements
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Observed correlation length corresponds to an average eddy size of ~ 1.3 cm with 
fluctuation level in the vicinity of 1% in the gradient region.
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Reflectometry:Radial correlation length evolution depends on location 
inside pedestal region(steep gradient and pedestal top) 

Radial correlation length 
increases at the pedestal 
top
• A factor of 2 increase during 

the last 50% of ELM cycle
• Increase size of eddies

➡suggesting enhanced 
radial transport during the 
ELM cycle

Steep gradient correlation 
length is unchanged 

Caveat: quantify the 
geometric effects on the 
measured correlation.
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Simulating the Edge Turbulence during ELM cycle using XGC1

Comprehensive gyrokinetic code

Diverted magnetic field geometry with material wall boundary condition
– Includes magnetic axis: wall to wall simulation
 Wall recycling of neutral particle with atomic physics

Particle-momentum-energy conserving collision operator

Multiscale simulation of neoclassical, turbulence, neutral particle,and 
atomic physics
– Present XGC1 capability: 

• ITG + neoclassical + neutral in diverted geometry 
• E&M turbulence in non-diverted geometry
• Soon to come:ITG-TEM + neoclassical + neutrals in separatrix geometry

18

See C-S Chang & S-H Ku at this meeting
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Role of the edge density fluctuations on setting the 
pedestal structure during the inter-ELM phase

Pedestal gradient has been predicted to be constrained by the 
onset of kinetic ballooning mode (KBM)*
– Recent  DIIID work has shown observations of modes localized in the 

pedestal region with features similar to KBM
– KBM characterized by:

• k⊥ρi < 1 similar to ITG
• modes have radial scales of the order few cm in the pedestal region of NSTX
• fast rising growth rate increasing with electron β
• propagation in the ion diamagnetic direction.

NSTX: We look for evidence of pedestal-localized microinstabilities, 
and their correlation with the ELM cycle 

Perform gyrokinetic simulations to identify the instabilities at play
– Linear gyrokinetic simulation using GENE 
– Nonlinear XCG1 with adiabatic electrons for now. 

19

Yan PRL 107 (2011)
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The gyrokinetic code GENE
GENE is a physically comprehensive Vlasov code which
– allows for kinetic electrons electromagnetic fluctuations, collisions, and external 

ExB shear flows

– is coupled to various MHD 
and transport codes

– can be used as initial 
value or eigenvalue solver

– supports local (flux-tube) and 
global (full-torus), gradient- 
and flux-driven simulations

– well benchmarked and hyperscalable

20

see: gene.rzg.mpg.de
        and F. Jenko’s talk

Temperature fluctuations of a 
global GENE simulation for 

ASDEX-Upgrade
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Linear gyrokinetic simulations using GENE (including full magnetic 
perturbation) at the pedestal top indicate presence of ITG/KBM-TEM 

hybrid modes along with microtearing modes

The characteristic scales of these instabilities appear to be consistent 
with experimental scales determined with BES system
TEM modes are “hybridized” with KBM as identified by the β scan
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Nonlinear simulations using XGC1 are performed for cases during 
the last part of the ELM cycle

δf mode in XGC1
– 200 x 60 spatial grid
– simulation box up to ψn ~ 0.95 

to include the unstable region
– Using experimental profiles

Collisions and flows are not 
included in this simulation
–  Adiabatic electrons
Probing the fully nonlinear 
phase of the simulations
Characteristic poloidal 
structures propagating in 
the ion diamagnetic 
direction. 
– ITG resides at the pedestal top, 

but nonlinearly and nonlocally 
penetrated into the pedestal 
region.

– Sampling a region encompassing 
both BES and the reflectometer 
measurements
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– Using experimental profiles
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Simulations from XGC1 indicate localized fluctuations with 
broadband power spectra   
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Nonlinear simulations from XGC1 show localized fluctuations with 
experimental level radial and poloidal correlation lengths   
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Summary/Future work 

Continuous increase of the electron temperature and much less variation in electron density and 
pressure build up and at time saturation prior to the ELM onset
– Pressure gradient, however, is clamped during most of the ELM cycle
– NSTX exhibits wider pedestal widths than conventional tokamaks
– Pedestal width scaling like (βθ)0.8 in agreement with predicted KBM-constrained pedestal
Pedestal stability are performed using MHD codes
– NSTX pedestal during the last 50% of the ELM cycle is found to be kink-peeling unstable

• Calculations were performed using ELITE code
– Using “ball” a module of GS2, pedestal top is found to be unstable to ideal high-n-ballooning 

modes 
Characterization of the fluctuations during the inter-ELM phase
– BES and reflectometry confirm ion scale turbulence 0.2 ≤  k⊥ρi  ≤ 0.7 
– Poloidal correlation is larger than radial correlation length
XGC1 preliminary simulation results: correlation lengths agree with experimental observations

• Most unstable mode is ITG in simulation: study will be extended to full-f nonlinear XGC1 simulation
Linear GENE simulation also show the presence dominant hybrid ITG/KBM-TEM modes at the 
pedestal top with subdominant microtearing.

Extend the simulation to full-f mode using XGC1 and account for measured flows and add collisions.
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Sign-up sheet
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Most of the drive appears to be provided by the 
electron temperature gradient

ETG/TEM could be playing a role in the pedestal scaling
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