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Motivation to new !f particle code for NTV calculation 

•  Neoclassical Toroidal Viscosity plays an important role for control of 
plasma rotation, stability and performance in perturbed tokamaks 

–  Non-axisymmetric magnetic perturbations can fundamentally change the neoclassical 
transport by distorting particle orbits on deformed or broken flux surfaces 

–  Application of non-axisymmetric perturbations drive significant magnetic braking by 
NTV, thus change plasma rotation impacting on tokamak performance 

–  Non-axisymmetric perturbations are important control elements to actively stabilize 
locked modes, edge localized modes, and resistive wall modes 

•  A new !f particle code has been developed to calculate neoclassical 
transport in non-axisymmetric configurations 

–  How to accurately calculate !f and !B? 
–  Analytic studies are limited in narrow regimes or strong approximations on particle 

orbits, geometries, and collisions 
•  Large aspect-ratio approximation, trapped particle only, simplified !B, ignoring orbit width 
•  1/" theory: pitch angle scattering, but narrow regime, w/o magnetic precession 

•  Combined theory: combined regime, bounce harmonics, but Krook collision 

–  New code calculates !f from guiding center particle motion with momentum conserving 
collision operator using !B from 3D perturbed equilibrium solver (IPEC) 
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[K.C. Shaing, Phys. Plasmas 10, 1443 (2003)] !

[J.-K. Park et al., Phys. Rev. Lett. 102, 065002 (2009)] !
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POCA is a drift-kinetic !f particle code for neoclassical 
transport with non-axisymmetric magnetic perturbations 

•  POCA (Particle Orbit Code for Anisotropic pressures) 
–  Follows guiding center orbit motions in (#, $, %, v||) space 
–  Solves Fokker-Plank equation with modified pitch-angle scattering collision operator 

conserving toroidal momentum 
–  Calculates local neoclassical quantities: Diffusion, flux, bootstrap current 
–  Directly calculates anisotropic tensor pressure and NTV torque 
–  Uses DCON/IPEC type routines and parallelized with MPI 
–  Reads 2D equilibrium from 20 equilibrium types (exp/analytic), and 3D perturbation from 

IPEC and analytic model 
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Guiding center motion in NSTX! 3D effects on banana orbit!

[K. Kim et al., Phys. Plasmas 19, 082503 (2012)] !
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POCA tracks guiding center orbit motions by Hamiltonian 
equations of motion 

•  Guiding center motion is described by Hamiltonian equations of motion 
–  Boozer coordinates is used 

–  Drift Hamiltonian is expressed as  

–  Hamiltonian equations of motion are derived by coordinate transformations  
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µ0: permeability of free space, B : magnetic field, #: toroidal flux, G: poloidal current, I: toroidal current!
µ: magnetic moment, q: charge of particle, &: rotational transform, ': potential 
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[R.B. White, Phys. Fluids B 2, 845 (1990)]!
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•  !f is calculated from Fokker-Planck equation 
–  Fokker-Planck equation is written as  

–  Fokker-Planck equation is reduced to(

–  By using local Maxwellian, !f can be obtained as 

•  Collision operator without momentum conservation 
–  Lorentz collision operator for pitch angle scattering is expressed as 

–  Monte Carlo equivalent of Lorentz collision operator is used to update particle’s pitch  

POCA solves Fokker-Planck equation for !f 
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Modified pitch-angle collision operator is used to preserve 
toroidal momentum conservation 

•  Lorentz collision operator conserves momentum by a correction term 
–  Original Lorentz collision operator does not conserve momentum 
–  One form of momentum conserving operator is given by 

–  This can be rewritten with previously used non-conserving Lorentz operator Cm(f) 

–  Momentum conserving collision operator can be implemented by adding a correction 
term in !f calculation as 
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Momentum restoring term!
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POCA was successfully benchmarked in axisymmetry 

! 

jb "
1

1+ #* + a#*

Momentum conserving!
Non-conserving!

Convergence!

Bootstrap current!Diffusion!

Momentum!

[R.B. White and M.S. Chance,  Phys. Fluids B 27, 2455 (1984)] ! *[F.L. Hinton and M.N. Rosenbluth, Phys. Fluids 16, 836 (1973)]!
 **[M. Sasinowski and A.H. Boozer, Phys. Plasmas 2, 610 (1995)]!

*!
**!
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Neoclassical Toroidal Viscosity is calculated using perturbed 
pressures and magnetic field spectrum 

•  POCA calculates NTV torque using 

–  Perturbed pressures defined as 

–  Magnetic field spectrum decomposed to Fourier series assumed as 

–  Then, NTV torque is calculated using               in Boozer coordinates 

•  Analytic perturbation model is used for basic study 
–  An analytic magnetic perturbation model is prescribed as 

–  q profile is prescribed to have a single resonance at q=m/n  
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•  NTV from POCA indicates a theoretically predicted !B2 dependence 
‒  "*~2.0 (n0=1019) and (m=7,n=3) are selected for !B scan 
–  NTV is scanned by varying the strength of magnetic perturbation for resonant surface   

(#n=0.5) and non-resonant surface (#n=0.35, 0.65) 
–  Clear !B2 dependencies are found for both resonant and non-resonant flux surfaces, 

confirming theory prediction 

POCA confirms !B2 dependence of NTV torque  
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Kinetic profiles (R0=10.0, a=2.5, Bt=10.0)!

NTV dependence on !B strength!

q=7/3 ("n ~ 0.5)!

[K. Kim et al., Phys. Plasmas 19, 082503 (2012)] !



2012 IAEA FEC (TH/P2-27) – NTV study with !f particle code (Kimin Kim) ! Oct. 9, 2012!

NTV torque was benchmarked with combined theory 

•  NTV is calculated by perturbed pressures and magnetic field spectrum 
–  Analytic perturbation model is given to resonate with q=7/3 surface by 

–  Calculated NTV torque shows very similar profile with theory revealing strong resonant 
features, but discrepancies exist depending on collisionality 

–  Krook collision operator in theory may cause discrepancies in the low collisionality ! 

"B
B0

= #$2 cos m% & n'( )     with # = 0.02, (m,n) = (7,3)

Resonance!

[J.-K. Park et al., Phys. Rev. Lett. 102, 065002 (2009)] !
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NTV profiles compared with theory(

[K. Kim et al., Phys. Plasmas 19, 082503 (2012)] !
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NTV torque was compared with 1/" theory 

•  NTV approaches 1/" regime as 
collisionality increases 

–  1/" formula indicates stronger resonance 
but weaker non-resonance 

–  Magnetic precession and regime 
overlapping by Maxwellian energy 
distribution in POCA and combined 
formula cause broader NTV profiles than 
1/" formula 

•  High energy particle impacts on NTV 
–  High energy particles in the Maxwellian 

tails strongly impact at the non-resonant 
flux surfaces 

–  In the high collisionality, collisions are 
found to become more dominant than the 
high energy particle effects 

[K.C. Shaing, Phys. Plasmas 10, 1443 (2003)] !
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Shift of NTV peak indicates resonant nature of NTV transport 
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•  Resonant flux surface for NTV is shifted by externally applied mode 
–  Analytic !B is applied with changing poloidal mode number and fixing toroidal mode 

–  NTV peak is shifted by the applied mode, and rapidly drops at the off-resonant surface; 
Strong resonant nature of magnetic braking 

–  Simulation approaches steady states in sufficient collision times: Good Convergence ! 

"B
B0

= 0.02#2 cos m$ % n&( )     with (m = 6,7,8, n = 3)
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General Perturbed Equilibrium Code (GPEC) 

13 

•  Perturbed equilibrium codes are efficient to study 3D field physics in 
tokamaks with non-axisymmetric perturbations 

–  IPEC solves ideal force balance with ideal constraints 
–  GPEC will solve non-ideal force balance with arbitrary jump conditions, which will be 

matched with inner-layer solver 
–  POCA will use 3D perturbations from IPEC, and provide anisotropic pressure tensor to 

GPEC 

GPEC!

IPEC with arbitrary jump 
conditions at rational surfaces!

IPEC with additional forces at 
irrational surfaces !

IPEC! Anisotropic pressure calculator 
in drift-kinetic regime !

Delta-prime calculator for 
inner-layer physics!
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POCA is now applied to experimental analysis 

•  POCA uses 3D field spectrums calculated by IPEC 

–  Original IPEC output contains nonphysical peaks at the rational surfaces 
–  Fitting technique (i.e. Chebyshev polynomials) is used as 

–  Fitting follows overall features of IPEC !B, and effectively smoothes the peaks ! 
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[J.-K. Park et al., Phys. Plasmas 14, 052110 (2007)] !
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Sensitivity of Chebyshev Polynomials 

IPEC!
nc=10!
nc=20!
nc=30!
nc=40!
nc=50!

NSTX 124439 (#=0.0)! NSTX 124439 (#=0.5)!
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•  Fitting is sensitive to the degree of Chebyshev polynomials 
–  Lower degree roughly follows IPEC !B with wobbling, and is poor at the edge of dense 

rational flux surfaces 
–  High degree shows good agreement with IPEC !B, and fitting follows the rapid !B 

changes at the rational flux surfaces well 
–  nc>20 provides a good resolution for fitting, but this is case-dependent 
–  Higher degree is more accurate but requires longer computing time 
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NTV can be inferred from toroidal rotation damping 
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[J.-K. Park et al., Phys. Plasmas 16, 056115 (2009)] !

•  Rotational damping rate and NTV are estimated from CHERS 
–  Damping rate is calculated by toroidal rotation change compared to a reference 

discharge without magnetic braking ()=2.3, Ip=0.8MA, BT0=0.45T, n=3 for 124439) 
–  NTV torque is interpreted from the damping rate by 
–  Theoretically calculated neoclassical offset rotation is used for toroidal flow by  

! 
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     with CN $ 3.5 (1/%),  CN $ 0.92 (% _ % ),  CN $ 2.0 (combined)
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First numerical application of POCA in NSTX indicates good 
agreements in NTV profile and total torque 
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•  NTV by POCA gives a good agreement with measurement in NSTX 
–  POCA calculates damping rate from NTV / Experiment gives NTV from damping rate 
–  Both damping and NTV torque profiles show good agreements with measurements 

while POCA predicts weaker NTV at central region and stronger at outer region 
–  Combined theory is valid only within an order of magnitude, which might be due to the 

large aspect-ratio expansion 
–  Total NTV torque agrees very well; Experiment 3.5 Nm  /  POCA 4.5 Nm 

Damping rate (NSTX 124439)! NTV (NSTX 124439)!
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POCA provides an improved prediction for NTV in the NSTX 
magnetic braking experiment 

18 

•  NTV is calculated for NSTX error field correction experiment 
–  Selected discharge 132729 is a case of IEFC=750A, which produced a strong magnetic 

braking (Ip=1.1MA,  BT0=0.55 T) 
–  Discrepancies are found in damping and NTV profiles: POCA predicts weaker NTV at 

inner and edge region and stronger NTV elsewhere 
–  Total NTV torque still agrees well; Experiment 5.1 Nm  /  POCA 4.66 Nm 

Damping rate (NSTX 132729)!
[S.P. Gerhardt et al., Plasma Phys. Control. Fusion 52, 104003 (2010)] !

NTV (NSTX 132729)!
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Uncertainties in Measurement and Calculation of NTV 

19 

•  Robust diagnostic is required for NTV analysis 
–  Damping rate is inferred from CHERS assuming CHERS represents the main ion 

rotation: Different responding time to the non-axisymmetric perturbations 
–  Neoclassical offset flow is critical but difficult to measure 

•  Offset flow can be strong at the H-mode edge due to a steep temperature gradient, so it can 
greatly enhance the NTV value at the edge 

•  Ignoring offset, measurement gives a moderated torque at the edge, and reduces total NTV:   
3.5 Nm ! 1.5 Nm for 124439  /  5.1 Nm ! 2.35 Nm for 132729 

•  Ideal perturbed equilibria can fail in high * and strong NTV braking 
–  Ideal perturbed equilibria neglects a shielding effect associated with toroidal toque 
–  NTV effect on the perturbed equilibria cannot be ignored, since |s|~0.5 > |$|~0.2 in the 

NSTX discharges, where 

–  local NTV effect on the perturbed equilibria should be considered particularly at the 
edge, which is dense with the rational surfaces.(

–  Self-consistent calculation of !B including non-ideal plasma response will be eventually 
required, and can be achieved from a general perturbed equilibrium code solving 3D 
force balance with the perturbed anisotropic tensor pressure 

! 

s " # $W
$Wv

          % " #
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2N$Wv [A.H. Boozer., Phys. Rev. Lett. 86, 5059 (2001)] !
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Summary 

•  A new !f particle code (POCA) has been developed 
–  Optimized to calculate neoclassical transport in non-axisymmetric configurations 
–  Benchmarked with neoclassical and NTV theories 

•  Strong resonant nature of magnetic braking by NTV 
–  Application of single harmonic magnetic perturbation shifts the peak NTV at the 

resonant flux surface corresponding to the applied mode, indicating strong resonant 
nature of magnetic braking 

•  POCA was applied to NSTX magnetic braking experiments 
–  IPEC provides perturbed magnetic field throughout Chebyshev polynomials 
–  POCA gives good agreements on the rotation damping and NTV torque profiles 
–  Excellent agreements are found for total NTV torque 

•  Improved measurements and self-consistent !B are necessary 
–  Robust measurement of toroidal rotation and neoclassical offset is critical 
–  Self-consistent !B and thereby NTV can be accomplished throughout General 

Perturbed Equilibrium Code (GPEC) coupled with transport 
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•  Bounce harmonic resonance can significantly enhance NTV 
–  Resonant ExB creates a new type of bounce orbit defining l class, which resonates 

with bounce frequency 
–  Numerous modified orbits exist depending on energy and pitch of particle, magnetic 

field configuration, and ExB rotation 
•  Even in small rotation, small fraction of particles can have bounce harmonic resonances 

–  The modified orbit prevents phase mixing of bounce motion, thus enhances radial 
transport and NTV 

POCA demonstrates bounce harmonic resonance 

Rotation!
Closed orbit (n=3, l=1)!

Original bounce orbit w/o rotation!
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