NSTX edge losses are field aligned and likely due to fast-wave propagation in SOL

- HHFW is lost to divertor along SOL field lines
 - Good agreement between field-line mapping and measurements
- HHFW power couples to all SOL field lines in front of antenna
 - ... not just field lines connected to antenna components

Obtain radial profile of HHFW power coupling to SOL field lines

- Profile peaks near both antenna and last closed flux surface (LCFS)
- Obtained by applying field-line mapping to divertor heat flux

Coupling profile suggests fast-wave propagation in SOL

- Profile suggests radial standing wave structure
- Edge losses also correlate onset density for perpendicular fast-wave propagation

RF power lost *directly* to divertor regions through the SOL on NSTX

- Edge interactions apparent from bright streaks in camera images
- Bright spirals form on both upper and lower divertor
 - IR cameras measure large heat flux in spirals
- Edge loss can be up to 60% of coupled RF power

Edge loss possibly caused by fast-wave propagation in SOL

- Edge loss is correlated with onset density for perpendicular fast-wave propagation*
 - Enhanced loss when onset density too close to antenna
- HHFW coupling profile at midplane suggests standing-wave patterns in SOL
- Could be other loss mechanisms
 - e.g., hot ion flux due to parametric decay instability

*J.C. Hosea et al., Physics of Plasmas 15 (2008) 056104.

Diagnostics in divertor measure RF spiral properties

- IR cameras show strong divertor heating under spiral
- Divertor optical camera (Li I line) shows strong emission in spiral zone
- Langmuir probes respond strongly to RF when under spiral
- Current-sensing tiles (Tile 3I and 3k) detect increase in tile currents when under spiral

Major radius of RF spiral at any toroidal position depends on field pitch

- Radius shifts by ~ 15 cm inward with increased pitch
 - Upper figure: low pitch I_P/B_T = 0.8 MA/ 5.5 kG (31°)
 - Lower figure: high pitch $I_P/B_T = 1 \text{ MA} / 4.5 \text{ kG} (42^\circ)$
- Can sweep RF spiral across diagnostics by changing the field pitch

141888 time = 0.312s - bkg 0.247s 141899 time = 0.319s - bkg 0.247s

R.J. Perkins et al., Physical Review Letters 109 (2012) 045001

High field pitch puts spiral over Langmuir probe^{*} 4 but not on other probes a few cm in

Probe Array

- Probe array embedded in divertor floor at Bay B
- RF-induced effects are localized
- Probe P4 floating potential responds strongly to RF at high pitch
 - Probe P2, 6 cm inboard, has a much weaker response

M. Jaworski et al., Review of Scientific Instruments 81 (2010) 10E130.

Current-sensor tiles track movement of RF spiral

- Certain divertor tiles are instrumented to measure currents
- Bay K tile current decreases as RF spiral moves inward...
- ... while Bay I tile current rises

S. Gerhardt et al., Review of Scientific Instruments 82 (2011) 103502.

🔘 NSTX-U

Field-line mapping shows path of lost HHFW power from antenna to divertor

- Follow field lines using SPIRAL code
 - SPIRAL is a full-orbit code
 - Particle orbits closely follow field lines
 - Only using field-line tracing ability of SPIRAL
- Start field lines at midplane between antenna and LCFS
- Track field lines until they strike divertor

G.J. Kramer et al., 22 IAEA Fusion Energy Conference (Geneva, 2008) CD-ROM file IT/P6-3, and G.J. Kramer et al., submitted to Plasma Physics and Controlled Fusion (2012)

Field-line mapping models flow of RF power along field to divertor

- Three sets of field lines plotted
 - Colors denote different starting radii at midplane
 - Each set has 90° span (same as antenna)
- Field lines spiral and focus radially around the center column
 - Resembles camera images
- Field lines started farther from antenna spiral in more
- Field lines to probe come from 153 cm, well away from the antenna

Calculated strike points on divertor form a spiral that closely matches the observed RF spiral

... create spiral pattern close to

camera images when all SOL

Strike points for field lines started at across entire SOL midplane...

Computed strike points move with pitch as seen in camera images

- Strike points move in agreement with camera images
- Strike points reveal that spiral motion is a rotation due to changing field pitch

NOTE: Coloring scheme differs from previous slide

Computed strike points move with pitch and match diagnostic measurements

- Strike points move with pitch and match tile and probe measurements
- As the magnetic pitch increases:
 - Spiral moves over probe 4 location
 - Spiral moves over tile 3i and off of tile 3k

🔘 NSTX-U

Optical divertor camera agrees with SPIRAL strike points until close to LCFS for EFIT02 Equilibrium

- Green strike points from right antenna edge
- Yellow strike points from left edge
- Black portion due to inversion (hidden by center column)
- 🔘 NSTX-U

13

- Camera image of divertor Li I emission
 - Li from sputtering
 - Enhanced via RFdriven sheaths or particle flux
- Camera data agree with strike points until close to the LCFS
 - Jagged portion due to CHI gap
 - EFIT02 equilibrium fit

Field-line mapping agreements is robust even with different equilibrium fits

- Top figure: EFIT02
 - Fits RF spiral very well at outer radii and just inside CHI gap
 - Eventually deviates at radii approching the outer vessel strike radius
- Bottom figure: LRDFIT04
 - Does not fit the RF spiral as well as EFIT02 at larger radii
 - Fits better than EFIT02 at smaller radii
- Both equilibrium fits produce strike poitns that generally match spiral
 - Small changes between fits do not alter main conclusions
 - They do put a limit on equilibrium accuracy

Divertor IR cameras measure strong RF-induced divertor heating

RF-induced heat peak on lower divertor agree with SPIRAL strike points at Bay I

- Outer RF heat peak coincides with first computed spiral pass
- Second pass of spiral has weak heat deposition
 - However, second pass heating seen on other shots
- Several heat peaks seen at small R_{DIV} near LCFS
 - Computed spiral also makes several passes there
 - Exact positions depend on equilibrium fit (next slide)

ELM-free discharge has negative dip in RF-induced heat flux

- Negative dip in del Q near outer vessel strike radius
- Due to change in plasma exhaust that prevents resolution of RF heat peaks near outer vessel strike radius
 - ELM-free shot (130621) has lower edge density
 - Less edge loss leads to more core heating & exhaust
 - ELMy shot (135333, prev. slide) has higher edge n_e, stronger edge loss, weak core heating

IR data for ELM-free shot agrees with SPIRAL strike points

- RF pulse heats divertor in several locations
- Measured radii of deposited heat coincide well with strike-point radii computed by SPIRAL
- Negative dip obscures RF heat peak nearest outer vessel strike radius

Differences in equilbrium fits shift strike points slightly but do not change conclusion

- Strike points shift slightly at Bay I by using LRDFIT04 instead of EFIT02
- However, alignment of heat peaks with calculated strike points is quite good in both cases

Radial profile of HHFW power coupled to SOL field lines and lost to divertor

Bay H

- Map divertor IR data back to antenna midplane along field lines
- Can only map peaks of heat flux to midplane
 - IR data obtained at Bay I
 - Cannot recreate entire coupling profile (would need data from around the torus)
- Must factor in flux expansion • (next slide)

Flux expansion needed to map RF divertor heat flux back to its origin at antenna midplane

- RF divertor heat flux, Q_{div}, measured with IR cameras
- HHFW power coupled, Q_{SOL}
- Consider differential surface element in divertor and its image at midplane under mapping:

$$Q_{SOL}R_{SOL}d\varphi dR_{SOL} = Q_{div}R_{div}d\varphi dR_{div}$$

It follows that

$$Q_{SOL} = Q_{div} \frac{R_{div}}{R_{SOL}} \frac{dR_{div}}{dR_{SOL}}$$

- Use this computed factor Q_{SOL}/Q_{div} to convert Q_{div} to Q_{SOL}

Midplane coupling profile Q_{sol} (MW/m²) peaks near antenna and LCFS in ELM-free case

- HHFW power couples strongly to field lines close to antenna and LCFS
 - Underlying mechanism cannot be localized to antenna
- Power loss coupled to SOL relatively weak in between
 - Suggests a radial standing wave pattern

Midplane coupling profile for ELMy case (135333) has similar structure – peaks resolved to LCFS

- Midplane profile contains similar structure:
 - Peaking of power coupled close to antenna and LCFS
 - Relatively low coupling in between
- Increased resolution near LCFS shows mid-plane peak ~ 2 mm from LCFS, whereas the outer peak is ~ 1.7 cm from the antenna

Summary

- HHFW power flow in the SOL to the divertor is along field lines in NSTX
 - Good agreement between diagnostic measurements and field-line mapping
- This HHFW power couples to all SOL field lines in SOL in front of the antenna
 - Losses are not isolated to field lines connected to antenna
- The mid-plane HHFW power coupling profile for this SOL power loss is obtained
 - Losses are not isolated to field lines connected to antenna
 - Power couples strongly to field lines near antenna and LCFS
 - Power couples weakly in between for ELMy and ELM-free cases studied
- Results suggestive of fast-wave propagation in SOL
 - Losses occur across width of SOL with profile suggestive of a radial standing wave
 - Direct measurements of RF fields will be needed to confirm this