Topic: EX-D

The Effects of Increasing Lithium Deposition on the Power Exhaust Channel in NSTX

T.K. Gray¹, J.M. Canik¹, A.G. McLean², R. Maingi¹, J-W. Ahn¹, M.A. Jaworski³, R. Kaita³, T.H. Osborne⁴, S.F. Paul³, F. Scotti³ and V.A. Soukhanovskii² and the NSTX Team

Email: tkgray@pppl.gov

Previous measurements on the National Spherical Torus Experiment (NSTX) demonstrated peak, perpendicular heat fluxes, $q_{dep,\ pk} \leq 15\ \text{MW/m}^2$ with an inter-ELM integral heat flux width, $\lambda_{q,\ int} \sim 3$ —7 mm during high performance, high power operation (plasma current, $I_p = 1.2\ \text{MA}$ and injected neutral beam power, $P_{NBI} = 6\ \text{MW}$) when magnetically mapped to the outer midplane. Analysis indicates that $\lambda_{q,\ int}$ scales approximately as $I_p^{-1}[1]$. The extrapolation of the divertor heat flux and λ_q for NSTX-U are predicted to be upwards of 24 MW/m² and 3 mm respectively assuming a high magnetic flux expansion, $f_{exp} \sim 30$, $P_{NBI} = 10$ MW, balance double null operation and boronized wall conditioning.

While the divertor heat flux has been shown to be mitigated through increased magnetic flux expansion[1], impurity gas puffing[2], and innovative divertor configurations[3] on NSTX, the application of evaporative lithium coatings in NSTX has shown reduced peak heat flux from 5 to 2 MW/m² during similar operation with 150 and 300 mg of pre-discharge lithium evaporation respectively. Measurement of divertor surface temperatures in lithiated NSTX discharges is achieved with a unique dual-band IR thermography system[4,5] to mitigate the variable surface emissivity introduced by evaporative lithium coatings. This results in a relative increase divertor radiation as measured by the divertor bolometry system. SOLPS[6] modeling of heavy lithium evaporation discharges will be presented to elucidate divertor operation in this scenario. While the measure divertor heat flux is reduced with heavy lithium evaporation, λ_q contracts to 3—6 mm at low I_p but remains constant as I_p is increased to 1.2 MA yielding λ_q 's comparable to no lithium discharges at high I_p . Implications for NSTX-U operation with heavy lithium coatings in the divertor will be discussed.

- [1] T.K. Gray, et al., J. Nucl. Mater. 415 (2011) S360-S364
- [2] V.A. Soukhanovskii, et al., Phys. Plasmas 16 (2009) 022501
- [3] V.A. Soukhanovskii, et al., Nucl. Fusion **51** (2010) 012001
- [4] J-W. Ahn, et. al., Rev. Sci. Instrum. 81 (2010) 023501
- [5] A.G. McLean, et al., submitted to Rev. Sci. Instrum. (2011)
- [6] J.M. Canik, et al., Phys. Plasmas 18 (2011) 056118

¹Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ²Lawrence Livermore National Laboratory, Livermore, CA, USA ³Princeton Plasma Physics Laboratory, Princeton, NJ 08543 USA ⁴General Atomics, San Diego, CA, USA

^{*} Work supported by U.S. Department of Energy contracts: DE-AC05-00OR22725, DE-AC52-07NA27344 and DE-AC02-09CH11466