Parametric dependencies of low-k turbulence in NSTX H-mode pedestals

D.R. Smith¹, R.J. Fonck¹, G.R. McKee¹, R.E. Bell², A. Diallo², S.M. Kaye², B.P. LeBlanc², R. Maingi³, S. Sabbagh⁴, and B.C. Stratton² ¹University of Wisconsin-Madison, Madison, WI 53706, USA ²Princeton Plasma Physics Lab, Princeton, NJ 08543, USA ³Oak Ridge National Lab, Oak Ridge, TN 37831, USA ⁴Columbia University, New York, NY 10027, USA

Validating predictive models of pedestal turbulence and dynamics is critical for ITER and next-step devices. Here, we characterize the poloidal correlation length and decorrelation time of low-k pedestal turbulence ($k_{.}\rho_{s} \leq 1$, $0.8 \leq r/a \leq 0.95$) in NSTX ELM-free, MHD-quiescent H-mode plasmas, plus we identify several parametric dependencies that influence pedestal turbulence quantities. Poloidal correlation lengths (L_{p}) in the pedestal are typically 10–20 cm and $L_{p}/\rho_{i} \approx 8-18$. The parametric dependencies with ∇V_{T} is consistent with enhanced confinement at higher ∇V_{T} , and parametric dependencies with ∇T_{i} and ∇n_{e} are consistent with drift-wave turbulence modes. Parametric dependencies with q and v_{e} , however, give mixed evidence for turbulence mediation by the GAM zonal flow. The measurements and analysis presented here broadly characterize pedestal turbulence in high-performance spherical torus plasmas and establish validation benchmarks for pedestal and edge simulations.