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Recent National Spherical Torus Experiment (NSTX) results demonstrate that the
snowflake divertor configuration [1] may provide a promising solution for mitigating steady-
state and transient divertor heat loads and target plate erosion. The present vision of the
tokamak plasma-material interface is an axisymmetric magnetic X-point divertor that enables
access to high confinement core and pedestal plasma performance metrics while keeping
divertor heat load and plate erosion within the operating margins of plasma-facing
component (PFC) cooling technology and target materials. Based on divertor designs tested
in large tokamak experiments, a closed divertor with tilted vertical targets and partial
radiative detachment of strike points is planned for ITER [2]. However, for much higher heat
fluxes expected in fusion nuclear science facilities (FNSF) and DEMO, the standard radiative
divertor solution is inadequate. The snowflake divertor configuration, as predicted by theory
[1], potentially reduces heat flux density and plasma temperature at the target by enabling the
divertor plasma-wetted area, effective connection length and divertor volumetric power loss
to increase beyond those in the standard divertor. In NSTX, a medium-size spherical tokamak
(ST) with lithium-coated graphite PFCs and high divertor heat flux (g« < 15 MW/m?, q) <
200 MW/m” [3]), snowflake divertor experiments have demonstrated a significant reduction
of steady-state [4] and ELM divertor heat fluxes, compatibility with high core plasma
confinement, reduction in core impurity concentration, and a stable operation with additional
impurity seeding that could increase divertor radiation further.

The snowflake divertor concept uses a second-order null-point created by bringing
close two first-order null-points of the standard divertor [1]. In recent NSTX experiments,
three divertor coils were used to obtain steady-state snowflake configurations for up to 600
ms in 4 MW NBI-heated H-mode discharges of 1.0-1.2 s duration (Fig. 1). The snowflake
geometry increased the plasma-wetted area 4. by 100-200 %; the X-point connection length
L, by 50-100%; and the divertor volume V;, by up to 60 % [4]. Analysis of the experimental
snowflake equilibria and their failure modes, in combination with a one-parameter analytic
description of the configurations [5] provided guidelines for the design of a real-time
feedback control algorithm, which is presently being implemented on NSTX [6].

The snowflake configuration formation led to a stable partial detachment of the outer
strike point otherwise inaccessible in the standard divertor at Pso;=3 MW in NSTX [7].
During the transition from the standard configuration to the snowflake, magnetic geometry
parameters A, Ly, and Vy;, increased continuously until the onset of detachment, resulting in
additional volumetric power and momentum losses. Divertor radiation increased by up to 50
%, as did recombination rate, while peak divertor heat flux was reduced from 3-7 MW/m? to
0.5-1 MW/m’. Additional CD, seeding increased divertor radiation further, thus showing the
potential to enhance non-coronal impurity radiation in the snowflake configuration due to its
already reduced 7, regime. H-mode core confinement with 7z~50-60 ms, Wip =200-250 kI,
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and H98(y,2)~1 (from TRANSP), was maintained albeit the detachment. Core carbon
concentration was reduced by up to 50 % due to the edge source reduction.

Transient heat and particle fluxes from large
Type I ELMs remain an unresolved issue for future {
divertor designs. ELM elimination techniques are
explored, as radiative buffering of ELMs has been g/
found ineffective [2]. NSTX experiments indicated N
that in the snowflake geometry, heat fluxes from Type
I ELMs (AW/W=7-10 %) were significantly dissipated ﬁ
(Fig. 2). Peak target temperatures (measured by fast P L.
infrared thermography) at peak ELM times reached © 05 L R(m)
1000-1200 °C in the standard divertor phase and only Fig. 1. Asymmetric snowflake-minus
300-500 °C in the snowflake phase, This was  divertor configuration realized in NSTX
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To project snowflake divertor properties to R (m)
future devices, e.g., NSTX Upgrade [8] and ST-based ~ Fig: 2- Divertor heat flux profiles measured
K X R i in the standard and snowflake divertor
FNSF, a two-dimensional multi-fluid edge transport configuration at peak Type I ELM times.
model based on the UEDGE code [9] is developed.
Initial simulations that used NSTX magnetic equilibria and a fixed carbon impurity fraction
indicated large reductions in 7, , T}, particle and heat fluxes due to the geometric effects.
Experimental results from NSTX, as well as from TCV tokamak [10], favorably
project the snowflake divertor properties to future high-power density devices. In the NSTX
Upgrade [8], two up-down symmetric sets of four divertor coils will be used to test snowflake
divertors for handling the projected steady-state 20-30 MW/m” peak divertor heat fluxes [3]
in 2 MA discharges up to 5 s long with up to 12 MW NBI heating. NSTX Upgrade magnetic
equilibria with snowflake configurations have been modeled using the predictive free-
boundary Grad-Shafranov code ISOLVER. Results suggest that a robust snowflake control
can be maintained even when time-dependent electromagnetic effects are included [8].
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