

Supported by

NSTX-U Research Highlights and Plans

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

Jonathan Menard, PPPL

For the NSTX Research Team

IAEA FEC Meeting October 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep

NSTX research targets predictive physics understanding needed for fusion energy development facilities

- Enable key ST applications
 - Move toward steady-state ST FNSF, pilot plant
 - Close key gaps to DEMO
- Extend understanding to tokamak / ITER
 - Leverage ST to develop predictive capability

<u>Present Research</u>

- Develop key physics understanding to be tested in unexplored, hotter ST plasmas
 - Study high beta plasma transport and stability at reduced collisionality, extended pulse
 - Prototype methods to mitigate very high heat/particle flux
 - Move toward fully non-inductive operation

New center-stack

2nd Neutral Beam

2

Nonlinear microtearing simulations for NSTX consistent with measured electron heat transport dependence on collisionality

Experiment 0.04 no Li Тi 0.03 $B_t \tau_E(T-S)$ v_{e}^{*} -0.79±0.1 0.02 0.01 q_{a/2}=2-2.5 <β_{nl}>=8-12% 0.00 0.20 0.00 0.05 0.10 0.15 0.25

v^{*}_e (at r/a = 0.5)

- $\begin{tabular}{ll} \Box & \end{tabular} Increase in τ_{E} as ν^*_e decreases $\end{tabular} \end{tabular}$
- Trend continues when lithium is used
 Kaye EX/7-1

 δB_r (Gauss) 10^{1} NSTX120968A02 t=0.560 s r/a=0.6 γ_c=0 10⁰ $\chi_{\rm e} (\rho_{\rm s}^2 c_{\rm s}/a)$ experiment (m) Z П 10⁻² W. Guttenfelder, 10⁻² 10⁰ 10⁻¹ et al., PRL 106, 10 155004 (2011) $v_{ei} (c_s/a)$

Theory

- Predicted χ_e and scaling ~ $v_e^{1.1}$ consistent with experiment ($\Omega \tau_E \sim B_t \tau_E \sim v_e^{*-0.8}$)
- Transport dominated by magnetic "flutter"
 - δB_r/B ~ 0.1% possibly detectable by planned
 UCLA polarimetry system
 Guttenfelder TH/6-1
- □ NSTX-U computed to extend studies down to < 1/4 of present v^*

NSTX/NSTX-U investigating snowflake divertor and detachment physics for large heat-flux reduction for FNSF, ITER, and Demo

🔘 NSTX-U

Disruption detection & warning analysis of NSTX being developed for disruption avoidance in NSTX-U, potential application to ITER

<u>Disruptivity</u>

- All discharges since 2005 with 1/3 ms sampling time
 - Recorded equilibrium and kinetic parameters, disruption statistics

Physics results

- □ Minimal disruptivity at relatively high $\beta_N \sim 6$; $\beta_N / \beta_N^{\text{no-wall(n=1)}} \sim 1.3$ -1.5
 - Consistent with specific disruption control experiments
- Strong disruptivity increase for q* < 2.5</p>
- Strong disruptivity increases for lowest rotation

Warning Algorithms

- Disruption warning algorithm shows high probability of success
 - Based on combinations of threshold based tests; no machine learning

- Results & Physics implications
 - ~98% disruptions flagged with at least 10ms warning, ~6% false positives
 - Most false positives are due to "near disruptive" events
 - Early MHD slows ω_{ϕ}

Gerhardt EX/9-3

recoverable Z motion

🔘 NSTX-U

NSTX-U Status and Plans – October 2012

L-mode discharge ramping to 1MA requires 35% less inductive flux when coaxial helicity injection (CHI) is used

□ Doubling of CHI closed flux current projected for NSTX-U: 200→400kA Decaying poloidal flux induces positive loop voltage, causes flux closure

Raman EX/P2-10

100% non-inductive NSTX-U operating points projected for range of toroidal fields, densities, and confinement levels

Projected Non-Inductive Current Levels for κ ~2.85, A~1.75, f_{GW}=0.7

Β _Τ [T]	P _{inj} [MW]	I _P [MA]
0.75	6.8	0.6-0.8
0.75	8.4	0.7-0.85
1.0	10.2	0.8-1.2
1.0	12.6	0.9-1.3
1.0	15.6	1.0-1.5

- From GTS (ITG) and GTC-Neo (neoclassical):
 - $-\chi_{i,ITG}/\chi_{i,Neo} \sim 10^{-2}$
 - Assumption of neoclassical ion thermal transport should be valid

🔘 NSTX-U

Rapid progress being made on NSTX Upgrade Project First plasma anticipated mid-2014

Beam box craned over NSTX

Box + cryo-panels next to NSTX

- 2nd NBI box moved into place
 - 1 month ahead of schedule

Old center stack **NEW Center Stack** TFOD = 20cmTF OD = 40cm

 Center-stack upgrade TF conductors being fabricated

🔘 NSTX-U

Formulating FY2014-18 5 year plan to access new ST regimes with Upgrade + additional staged & prioritized upgrades

