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Abstract:

Two extreme scenarios for frequency sweeping of Alvénic oscillation is studied. First we use
the generalized form of a criterion found by Lilley et.al. [1] that assesses whether marginally
unstable Alfvénic modes destabilized by energetic particles(EPs) are either likely to chirp
or to remain as steady. This criterion is applied to NSTX and DIII-D data to predict
whether chirping or steady Alfvénic oscillations are likely. Chirping arises in DIII-D when
background turbulence markedly decreases. The second investigation examines the plasma
response from an energetic particle source that increases in time. Instabilities are found for
the TAE, with a limited range chirping, and EPM, with a fast and extended chirping range,
by employing a new simulation technique that enables a significantly increased time-step to
be used. The results of the simulations is explained from analytic theory that shows a fast
chirping that is still slow enough for validity of adiabatic theory.

1 Part I. Chirp criterion applied to NSTX; DIII-D

The criterion, for whether chirping or steady oscillations arise is related to whether
stochastic diffusive or drag processes dominate the nonlinear response of energetic particles
near marginal instability. Stochasticity promotes steady behavior, while drag promotes
chirping. The equation that needs to be analyzed is an extension of a time delayed cu-
bic equation in the mode amplitude which describes the dynamics of a system close to
marginal stability, where stochastic processes acting on the resonant particles, such as
pitch angle scattering, lead to diffusive relaxation processes which can prevent distribu-
tion steepening caused by nonlinear wave motion and produce a steady nonlinear wave
whose amplitude is proportional to an increment above the marginal stability state of
the system as was derived in Refs.[9, 11]. However, if the stochastic processes are too
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small, these steady solutions are unstable and the cubic equation predicts an explosive
solution, where the relaxation processes are no longer important and nonlinear steepening
is enabled, leading to a solution of the cubic equation where the mode amplitude diverges
in a finite time. This divergence is indicative of the breakdown of validity of the cubic
equation. More accurate numerical simulation [10] shows that the explosive solution is a
precursor to the development of a frequency chirping response caused by the formation
of phase space holes or clumps.

In Ref.[1], the drag term was added to the kinetic equation for the resonant energetic
particles, to obtain a kinetic equation, which takes the normalized form,
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Here θ is the resonant particle’s angle coordinate that is conjugate to the particle’s action,
Ω = dθ/dt, and ω2

b is proportional to the mode amplitude, A(t) (physically ωb is the
trapping frequency of a particle deeply trapped in the wave), ν3stoch is the normalized
diffusion of the resonant energetic particle arising from stochastic processes such as pitch
angle scattering and ν2drag is the normalized drag. Solving this equation together with the
wave equation for the system, leads to the time delayed cubic equation,
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An analysis of the solutions of this equation was made in Ref [1], which produced
Fig.(1a), that shows as a function of νstoch/νdrag that there are regions where steady
solutions are: (A) stable, (to the left and above the solid curve); (B) unstable (below the
solid curve and above dotted line) and (C) did not exist (the hatched region of the figure).
The non-existence condition for a steady solution is given by,
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The function Int, plotted in Fig.(1b), implies that for νdrag/νstoch > 1.04 there is no
steady solution. The non-steady in this region is found to be explosive and a precursor
to a chirping solution.

Figure (1a) shows a comparison of the predictions of Eq.(2) with DIII-D and NSTX
data. Characteristic values for νstoch, based on the pitch angle scattering and νdrag were
used. As can be seen, the NSTX data points are not in line with predictions of Eq.(2).

This initial comparison of the theory has several shortcomings. The actual theory, dis-
cussed in detail Ref.[1, 12] includes contributions from the entire phase space, in (E,Pφ, µ)
(respectively, energy, angular momentum and magnetic moment) where the physical pa-
rameters: νstoch, νdrag and the particle wave interaction term, Vn,j(E,Pφ, µ), all have an
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appreciable variation in phase space (in particular the pitch angle scattering contribution
to νstoch becomes small when µB/E � 1).

When the physical dependence of phase space parameters is accounted for, the expres-
sion for Crt = Int in Eq.(3) is replaced by the phase space averaged expression,∑
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where the integration is over the resonant surfaces Pφ(E, µ) defined by:
Ωn,j(E, µ) ≡ nωφ(E,Pφ(E, µ), µ) + jωθ(E,Pφ(E, µ), µ) − ω = 0 with ωφ(E,Pφ(E, µ), µ)
and ωθ(E,Pφ(E, µ), µ) the mean angular toroidal and poloidal frequencies respectively.

This revised equation can be solved, by using for ν3stoch the normalized classical pitch
angle scattering rate ν3scatt, which is the dominant stochastic term in classical theory. We
then find that Int can be plotted as a function of νscatt/νdrag and it has the dependence
shown in Fig.(1b). When the phase space dependent νscatt/νdrag is used for calculating
Crt, we find that both the NSTX points and the DII-D points move to the region where
Crt < 0 indicating that there should be no steady solutions and implying that in both
devices chirping phenomena should be observable. Figure (1b) indicates the source of
the qualitative change of predictions. This figure shows that Int achieves much larger
magnitudes in the regions where νscatt/νscatt < 1.04 than when νscatt/νscatt > 1.04, which
implies that the contribution from the phase space region where µB/E � 1 can domi-
nate the determination of whether steady state or non-stationary solutions are likely to
occur, even when the fraction of particles in this region is relatively small. However, this
prediction contrasts with the physical data, which shows that chirping is ubiquitous in
NSTX but rarely occurs in DIII-D. To rectify this discrepancy, we propose the inclusion of
an additional source for diffusive stochasticity, the ion micro-turbulence generated by the
background plasma which can cause spatial diffusion of the energetic ions. Hence, we now
add to the expression for ν3stoch, the contribution of EP spatial diffusivity due to fast-ion
electrostatic micro-turbulence[2], whose scale size is comparable to the ion Larmor radius
of the background plasma. Then the determination of this addition to ν3stoch is obtained as
follows. The TRANSP code [3] is employed to obtain the thermal ion radial thermal con-
ductivity (which is essentially the particle turbulent diffusivity, Di) based on obtaining the
needed thermal conduction coefficient that would match the overall power balance that
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is empirically measured. The classical heat thermal conductivity due to collisions is sub-
tracted out and the remaining conductivity is attributed to ion micro-turbulence. Hence,
the diffusivity due to background ion turbulence of the background plasma is determined,
but we still need to determine the EP diffusivity. This value is estimated by using the
scalings found in an electrostatic gyrokinetic simulation [2] model for ITG turbulence,
which produced for passing EP particles a diffusivity given by, DEP ≈ 5DiTi/EEP . As
in the experiments we analyzed, the EP drive was mostly from the passing particles, this
expression is taken for DEP as the base case, with the understanding that in actual exper-
iments there can be considerable variation from this result. To capture this uncertainty,
we shall consider that DEP ranges from 2.5DiTi/EEP < DEP < 10DiTi/EEP .

Figs.(2a) and (2b) show values of snCrt1/4 ≡ Crt1/4 multiplied by the sign of Crt,
as a function of the ratio of phase-space averaged stochasticity and drag for Alfvénic
modes calculated from the mode structure found from the NOVA[5] code and the particle
wave interaction term computed from the NOVAK [5] code. Note that positive value of
snCrt1/4 indicates the likelihood for steady solutions, while negative values of snCrt1/4
indicates the likelihood for chirping. The values of snCrt1/4 for the NSTX data is
displayed in Fig. (2a) when radial diffusion is neglected. From the TRANSP code it was
found the background plasma transport was neo-classical for the experiments analyzed.
If the diffusivity from this mechanism is added to the pitch angle scattering contribution
to ν3stoch, the change in the value of snCrt1/4 was found to be imperceptible in the
display of Fig.(2a), even though ν3stoch increases by a factor ≈ 1.3. Thus these results
indicate that chirping modes are likely to arise in these NSTX experiments as is the
case in the actual experiments. The evaluation of snCrt1/4 for DIII-D leads to quite
different conclusions. The analysis using the TRANSP code indicated that substantial
turbulent diffusion is present. Fig.(2b) shows for several DIII-D experiments, the values
for snCrt1/4 for several values of the spatial diffusion. When the ion turbulent diffusion
is neglected (these are the points on the tail of the curvy arrows) and when turbulent
radial diffusion is included (these are the points at the heads of the curvy arrows). The
limits of the error bars indicate the values of snCrt1/4 respectively at half and twice the
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base value of the turbulent diffusivity that produces the lower and upper limits of the
estimated diffusivity. The experiment shows steady modes in these DIII-D shots. By in
large the theoretical curves agree with these observations, especially when the upper limit
for snCrt1/4 is taken.

We conclude this part of the paper with the following summary:
1. A theoretical criterion for chirping onset of TAE modes in experiment was compared
with experimental data in NSTX and DIII-D.
2. Very good correlation was obtained for all the data examined only when the theory
incorporated accurate phase space dependence of physical quantities, including: profiles
for the mode structure, the pitch angle scattering and the inclusion of energetic particle
diffusion due to background turbulence.
3. NSTX data displayed a strong tendency for chirping in agreement with theoretical
predictions, as background ion transport, which is low (it is neo-classical) so that classical
pitch-angle scattering is the main contributor to the diffusive process.
4. Most DIII-D shots produced steady oscillations during Alfvénic instability. In these
shots the background turbulence appeared large enough to prevent chirping from arising.
5. For the rare DIII-D where a chirping response was observed it was found that there
was a pronounced reduction in the background ion-turbulence level.
6. This investigation suggest an answer to a previous puzzle for why, when Alfvénic
oscillations appear in experimental data in NSTX and DIII-D, chirping Alfvénic modes
usually arise in NSTX but only rarely arise in DIII-D.
7. This method of analysis can be applied to other experiments including ITER.

2 Part II: Simulation of the Energetic Particle mode

(EPM) and Induced TAE Frequency Avalanche

This section discusses a numerical tokamak model which leads to interesting chirping
phenomena with properties similar what has been observed experimentally [7]. For TAE
modes the initial trigger frequency lies within the TAE gap and the range of the frequency
chirp is limited. In contrast, the EPM modes, whose initial frequency is inside, though
at the continuum edge, then rapidly chirps deeper into the continuum to produce a large
frequency shift, which in our numerical work is much larger than the gap frequency. Due
to the large and fast frequency shift, this phenomenon has been referred to as frequency
avalanche [6, 7]. An adiabatic theory for the chirping response is outlined in this paper.
This adiabatic theory is found to replicate the evolution of the amplitude and chirping
rate vs. frequency shift that were produced by the numerical simulation.

We assume that growth rate of the TAE and EPM modes are slow compared to
the mode frequency which then allows for many transit times of the particles around
a tokamak before instability causes significant orbit deviation. The nonlinearity is due
to the wave-particle interaction that acts on the resonant energetic particles, while the
response from the plasma remains linear and the response of the non-resonant energetic
particles is assumed small enough to neglect.
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FIG. 3: In a plot of frequency vs. position, the MHD continuum lies on the parabolic-like
curve formed by two poloidal harmonics, m and m+ 1 and a single toroidal harmonic n.
The resonant EPs with an orbit width ∆b, which is depicted by double arrowed horizontal
lines, move along the red resonance line. The linear EPM is initially excited in the Alfvén
continuum just below the lower tip with the orbit width overlapping both continuum posi-
tions. As the mode frequency chirps downward with the resonant particle orbits forming
the clump move outward, eventually overlapping just a single TAE resonance position.

Presently our study is confined to large aspect ratio (with R0/a ≡ 1/ε � 1, R0 and
a being the major and minor radii) tokamaks with v2‖/v

2
⊥ � ε so that the modulation of

v‖ along a field line is negligible. As a result of the wave-particle interaction, a resonant
particle can cross field lines, while its speed and magnetic moment (µ) do not change.
The resulting equations have been simulated for the case where the wave excitation is
localized to a single TAE gap region. In this region there is an excitation of the m and
m+1 poloidal harmonics, and a single toroidal mode number n, such that the gap position
is located at q(rm) = (m+ 1/2)/n for relatively low magnetic shear, s ( 1 < s2 < ε), and
the TAE gap frequency ωTAE = vA/(2q(rm)R0), where vA is the Alfvén speed at r = rm.
The frequency response is chosen to be close to ωTAE and therefore below we use the
approximation for time derivatives in the wave equation,

∂2

∂t2
≈ ω2

TAE

(
1 + ε

(
ω(t) + ı

∂

∂t

))
+O(ε2), (5)

where ω(t) is the instantaneous mode frequency relative to the middle of the gap and
normalized by the half gap width.

We consider the frequency avalanche case where once there is significant frequency
shift, the resonant EPs are locked into the wave structure to enable them to move across
field line. During the avalanche, the mode frequency chirps rapidly downward, and the
resonant particles move outward so that the resonant particles can only have a single
crossing as is shown in Fig.(3).

The dynamics of EPs is governed by the drift kinetic equation,

∂f

∂t
+ (v‖ + vD0) · ∇f +

c

|B|

[
b̂×∇

(
∂ζ

∂t
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)
ζ

)]
· ∇f = 0, (6)

where vD0 =
v2‖+v

2
⊥/2

ωc
(b̂ × κ) is the unperturbed gradient B and curvature drift velocity

of EPs. As the distribution function is solved in time to allow the calculation of the EP
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current in the region around r = rm at each time step. Then one can solve the mode
amplitude ψ+ and ψ− that satisfy the relations,(

ω(t)± 1 + ı
∂

∂t

)
ψ± − xψ∓ = −C∓ + βh

∫ 2π

0

dθ

2π

∫ 2π
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·
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e−ı(l+1)θ ± e−ılθ − e−ı(l−1)θ ∓ e−ı(l−2)θ

)
, (7)

where the wave-particle interaction constant is determined from a matching condition,

1

π

∫ ∞
−∞

ψ±dx = ∆C∓, (8)

where ∆ is a known complex parameter determined by an outer region solution. The even
mode ψ+ as well as the odd mode ψ− are driven by the normalized EP’s source strength
βh which is proportional to EP’s stored energy. Both TAE and EPM modes[13] are found
to be unstable in the TAE gap and lower Alfvén continuum, respectively as shown Fig.(4).

FIG. 4: The linear frequency (left panel) and the growth rate (right panel) of TAE mode
in the gap and nonperturbative EPM in the lower continuum, respectively.

A simulation experiment is performed where a source is used to increase the instabil-
ity drive with time. The resulting evolving spectra is shown in Fig.(5). At first just the
perturbative TAE instability is excited, with a limited chirping range. However, as the
simulation continues, the EP density builds up, until an EPM is excited in the continuum.
The excitation of this mode then leads to a rapid frequency downshift (see Fig.(5)) remi-
niscent of chirping that occurs in a frequency chirping avalanche that has been reported
in experimental observations on NSTX [6, 7].

Physically, this chirping is due to a phase space structure (a clump) moving across
field lines, to the outer region of the plasma. When the chirping structure is followed
in the frame of the structure, the distribution of the tracked trapped particles in phase
space is observed as shown in Fig.(5). This chirping structure is embedded in the same
shaped separatrix as is theoretically expected to arise from the observed field amplitude
and chirping rate. Thus the shape of the separatrix is consistent with the theoretical
prediction.

An analytic theory has been developed, (to be discussed in detail later publication)
that reproduces the mode amplitude and chirping rate of the TAE avalanche as is shown
in Fig.(6) where the adiabatic approximation i.e. f = f(J(t)) is used for the distribution
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FIG. 5: Evolution of TAE and EPM mode spectrum (left panel) with increasing source
strength. The frequency region, −1 < ω < 1, is the TAE gap width. The corresponding
trapped particle distribution in phase space (right panel) encompassed by inferred theoret-
ical separatrix shape.

function that determines the energetic particle current. The action J of the wave trapped
particle is calculated based on J =

∮
pdq/(2π) which is assumed to remain invariant during

the chirping process in the deep continuum. During the chirp, new particles originally
outside the clump will be entrapped by the growing trap wave amplitude and form a new
adiabatic invariant surface near the growing updated separatrix.

FIG. 6: The bounce frequency (right panel) and chirping rate (left panel) are calculated
from the adiabatic theory during the avalanche, which replicate the Vlasov simulation
results in the wave frame.

To summarize, a novel numerical method has been developed to study frequency chirp-
ing of TAE’s and EPM’s, where a frequency avalanche develops from the original EPM
excitation. After the resonant particles have moved sufficiently outward to have only
a single continuum crossing, the newly developed analytic theory predicts the rate and
amplitude of frequency avalanche signal as is shown in Fig. (6). The present numerical
simulation ignores MHD nonlinearities which are significant. For example, the experimen-
tal data [6] for the frequency avalanche shows that the excited mode frequencies produce a
rich excitation of frequency harmonics. In future work we intend to further generalize our
method. Ultimately the goal is to describe wave-particle resonant excitations in general
three dimensional fusion systems whenever the basic unperturbed orbits of the system are
integrable.
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