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L-H transition is defined as ...

e |t is the sudden transition to a state of good energy
confinement in the edge:

+ Expected mode of operation for ITER.

Wagner PRL (1982)

e |t appears as heating power increases past some
threshold.

What is the mechanism driving the L-H transition?
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Most models on L-H fransition have two parts

1. Generation of sheared flow.

2. Suppression of turbulence by flow shear. [Focus of this Talk]

L-H transition theories are summarized
Connor and Wilson PPCF 42 R1 (2000) Review paper.
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Two main mechanisms can occur for turbulence
suppression by flow shear

€@ Energy transfer to flows directly depletes the turbulent fluctuations.

non-zonal ExB energy Zonal ExB energy

303@@ Notn g A@®vw

o —l

NSTX L-H transition CANNOT be explained by the depletion of
turbulence due to energy transfer to zonal flows

& Flow shear depletes the turbulence in other ways

NSTX data does not rule out such mechanisms.
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Some experimental investigations showed a
transfer of energy from turbulence to mean flow

& Studies using Langmuir probes provided evidence that nonlinear exchange of

kinetic energy between small scale turbulence and edge zonal flows.

Manz et al. PoP 19 072311
Xu et al. NF 54 (2014)

& Recent work on C-Mod using gas-puff imaging (GPI) provided a timeline for
the L-H transition: Cziegler et al. PPCF 2014

*First peaking of the normalized Reynolds power
*Then the collapse of the turbulence
*Finally the rise of the diamagnetic electric field shear

@ On DIII-D, heating power increases the energy transfer from turbulence to the

poloidal flow. Yan et al. PRL 2014
See Review paper Tynan PPCF 2016

[J However, in JET, near the edge shear layer, no evidence of energy transfer from
turbulence to flows was found. sanchez et al. JNM 2005

NSTX results are inconsistent with energy transfer to flows directly depletes the
turbulent fluctuations.
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Gas-puff imaging diagnostic is central o the NSTX L-H
transitions analysis

Zweben PoP (2010) for detailed description
: . GPl gas ™ D, Emission
* GPI provides edge turbulence images Bosmo_o_ \W from Puff

- Temporal resolution ~ 2.5 us
- Spatial resolution ~ 1 cm

142006 OH L-H @ 223.0 ms
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30 cm

Discharge characteristics (total of 17):

NBI-Heated: 138113:138119
| Ohmically-Heated: 141745:141751(not shown here)
RF- Heated: 141919:141922, 142006(not shown here)
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There is no significant change of turbulence quantities preceding
the L-H fransition but clear drop in fluctuation levels across the transition
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*The turbulence quantities are averaged over multiple discharges.

*Turbulence quantities changes are similar to previous observations.

What causes the drop in fluctuation levels across the L-H transition?

Can direct energy transfer from turbulence to mean flow explain this?
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Orthogonal dynamic programming (ODP)

applied to GPIl data for imaging velocimetry

S Banerjee et al., Rev. Sci. Instum. 86, 033505 (2015)

®* ODP enables to reconstruct a 2D velocity field.

—Comparison with TDE & Fourier type
velocimetry shows ~80% correlation.

® For each velocity component,

Vi = U; + U5, 1 E T@%T vVt

e Caveat:

—Velocimetry techniques show only velocities normal
to the intensity iso-contours.

—This caveat is shared by all velocimetry approaches.
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We test the suppression of turbulence via energy
transfer from turbulence to mean flow

O Evaluate the sign of production term: does turbulence
drive flows or vice versa?

O Is the absolute value of the production term big enough to
explain the rate of change of the thermal free energy?

O Does the energy in the mean flow increase as much as
the turbulence energy drops?
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Energy transfer direction is determined using the
production term

Positive Production term
NeM; < VpUy > Op < Vg >

Zonal ExB energy

P>0
z - _
NoM; A@wv neomn; Admvw
e
2 — 2

Negative Production term

NeM; < VpUy > 0y < Vg >

* In order to deplete the turbulence the production term must be positive.
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In NSTX, energy is fransferred from mean flows to
turbulence

Production term Zonal ExB energy

NeM; < VU > 0, < Vg >

— e nom;(vg)°
2

Production term

. Turbul - flows
YRR pibrienee eneigy = medh Tow e We observe energy transfer
W from zonal flow to turbulence.
5= 0
g — ¢ Inconsistent with the
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We test the suppression of turbulence via energy
transfer from turbulence to mean flow

O Evaluate the sign of production term: does turbulence
drive flows or vice versa?

In NSTX, energy is fransferred from mean flows to turbulence
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We test the suppression of turbulence via energy
transfer from turbulence to mean flow

O Is the absolute value of the production term big enough to
explain the rate of change of the thermal free energy?
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Recall: This energy balance between flow and

turbulence

Zonal ExB energy

NoTMN; AawV < vhiogm?umvw

Production term
NeM; < VoUy > Op < Vg >

@NSTX-U
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Thermal free energy is an additional reservoir for
the turbulence energy

See paper for details
Turbulence energy Am#:_ov Stoltzfus-Dueck, PoP 23 054505 (2016)

~ =\

Thermal free

energy Zonal ExB energy
g w) — \2
Neodeo Ne + NoMM; A@Wv < of ToTTYq A\C%v
M 30& w w
\_ ) Production term

NeM; < VoUy > Op < Vg >
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Thermal free energy is an additional reservoir for
the turbulence energy

See paper for details
Turbulence energy Am#:_ov Stoltzfus-Dueck, PoP 23 054505 (2016)

~—\

Thermal free
energy Zonal ExB energy
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\_ ) Production term
oMy < VgUyp > O < Vg >

Compare the rate of change of the thermal
free energy over the L-H transition to the
absolute value of the production term
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Production term is much less than the observed
rate of change of the thermal free energy

P ngm;<0g0,>0,<vg>|
Py Amﬁiﬁib mﬁ\:%@_mv\ﬂhim
0.051
NBI case
0.04-  Ratio NEEDS to be around 1 to have
” turbulence suppression.
0.03+
0.02] z
” * Ratio is much less than 1 so inconsistent
. with the turbulence depletion.
0.01
0)

IM : ;

Time rel. L-H T.:m_ Results are qualitatively similar

for RF and Ohmic cases.
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We test the suppression of turbulence via energy
transfer from turbulence to mean flow

O Is the absolute value of the production term big enough to
explain the rate of change of the thermal free energy?

Production term is much less than the observed rate of change of the thermal
free energy
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We test the suppression of turbulence via energy
transfer from turbulence to mean flow

O Does the energy in the mean flow increase as much as
the turbulence energy drops?
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Does the zonal flow absorb a significant fraction
of the total turbulence energy?

Stoltzfus-Dueck, PoP 23 054505 (2014)

Turbulence fluctuation energies
Zonal ExB energy

Thermal free
energy

3&0%&0 A\m\m vw | 30§@A®wv

non-zonal ExB energy

2 | 2

3@0

For zonal flows to take most of A Amw v \nwv | H | ~
the turbulence energy: (e /Me0)2[L] ~ 1
IAEA-2016 - Energy Dynamics L-H 20
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Kinetic energy in the mean flow is always much
smaller than the L-mode thermal free energy

- (Do vw\%
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Too weak to explain
the rapid turbulence
suppression at the L-H
transition.
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NSTX results do not support that energy iransfer to
flows directly depletes the turbulent fluctuations

e We consider the following energy balance to evaluate the turbulence depletion:
- Most experimental results neglected the thermal free energy

Thermal free non-zonal
energy ExB energy Zonal ExB energy
5 2 (52 _ \2
Neoleo Ne o Adl_.v < , | Tomi (VE)
2 Neg : 2 2

Production term
NeMy; < VU, > 0, < Vg >

¢ The turbulence quantities change across at the L-H transition but not before, so
the changes do not help identify the L-H mechanism.

& Energy-fransfer mechanism appears much too weak to explain the rapid
turbulence suppression at the L-H transition.

- Uncertainties in 2D velocimetry may be order unity, but the energy transfer mechanism is
~100x too small to explain the turbulence suppression.

- Future work will attempt to quantify the uncertainties in 2D velocimetry.
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Supplementary material
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Thermal free energy is an additional reservoir for
the turbulence energy

See paper for details

Turbulence energy Amqs_ov Stoltzfus-Dueck, PoP 23 054505 (2016)

~—\

Thermal free

energy Zonal ExB energy
fast slow
Leo mw l < > nomi (vg)”
2Neo € 2
Electron parallel Production term
conduction noMm; < Vg0 > Op < Vg >
Ve

Compare the change in power of
the thermal free between L and H
fo the absolute value of the
production term.
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NSTX results do not support that energy iransfer to
flows directly depletes the turbulent fluctuations

* We consider the following energy balance to evaluate the turbulence depletion:
- Most experimental results neglected the thermal free energy
Thermal free

energy Zonal ExB energy
fast
Teo 72 | o Slow [ nem(es)?
2Neo € 2
Electron parallel Production term
conduction nem; < Vgl > Op < U >
IV
¢ The turbulence quantities change across at the L-H transition but not before, so the
changes do not help identify the L-H mechanism.
-

Energy-transfer mechanism is likely to be much too weak to explain the rapid
turbulence suppression at the L-H fransition.

¢ But, Reynolds stress may contribute significantly to the measured mean flows.
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Reynolds siress-driven mean flow and the measured
mean flow are of the same order of magnitude

* Crude estimate the
Reynolds stress-driven flow

* Assuming flow damping at ion
transit rate

» Contribution of the
Reynolds stress to the
mean flow cannot
necessarily be discarded.

Time rel. L—H [mSs]
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Production term conservatively transfers energy
between non-zonal and zonal energy

Simplified energy balance equations

Oy (Ep+ EL) = [dV T@: —nj% — Teo (@) xgmvm nom; (0r0g) Oy (Vg g

/ »

GAM physics Production term

/ |
0) Or (Vo))

— %%\ Teo (@) K(ne mr:oss (U0

- Equations capture the energy transfer that plays a key role in many models of the
L-H transition.
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Energy is tfransferred from mean flows to turbulence
1 cm inside the separatrix for all heating schemes

Zonal ExB energy

Production term
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Kinetic energy in the mean flow is much smaller
than the thermal free energy for all discharges
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Approach for the decomposition of the velocity
field components

* Reynolds decomposition should be applied to the whole flux surface.
* However, GPl view is limited to a 30 x 24 cm patch of the flux surface
—The flux-surface average is replaced by a temporal average

* For each velocity component,

Vi = U; + U5, 1 E Tau&u \a’
High-pass filter of v(r,0,t) at 1 kHz — o(r, 0,t)

Low-pass filter of v(r,0,t) at 1 kHz — v(r,0,1)

This cutoff frequency was chosen to include the poloidally oscillating flow (2 - 5 kHz)
described in ref. Zweben et al. PoP (2010) into the non zonal component.

Variations (1 - 2 kHz) around this cutoff do not qualitatively change the results presented here.
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For all heating schemes, we observe that the energy is transferred
from mean flows to turbulence 1 cm inside the separatrix
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e This is inconsistent with the turbulence depletion hypothesis prior to the L-H transition.

¢ Such negative production term has previously been observed in JET ohmic discharge.
sanchez JNM 337 296 (2005)
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The inferred absolute shear in the mean flow decreases across
the L-H transition, which is inconsistent with the shear model

Bulk poloidal velocity Shear in mean flow
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* GPlI emission bands become radially narrow across the L-H transition and the fluctuation level
drops in H-mode: Decreasing shear flow in H-mode may be an artifact of the velocimetry.
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The kinetic energy in the mean flow remains smaller than the
thermal free energy at two radii (1 cm & 3.5 cm) inside the LCFS
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The sum of the two turbulent fluctuation energies needs
to be exhausted in order to deplete the turbulence

Electron parallel conduction STOLTZFUS-DUECK, POP 23 054505 (2016)
fast timescale

Ve

()

Thermal free energy non-zonal ExB energy Zonal ExB energy

(52 — o\ 2
~ nomni; \ v M .
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(&
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nom; @ﬁ@%
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(52 vg5)/c
~ nomiq; v For energy transfer to mean flows to 6 S
Leo 52 & deplete the turbul th > ]
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2Neg € 2 A\;m\e@movw ~
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Reynolds siress-driven mean flow and the measured
mean flow are of the same order of magnitude
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-2 0 2
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* Crude estimate the
Reynolds stress-driven flow

* Assuming flow damping at ion
transit rate

» Contribution of the
Reynolds stress to the
mean flow cannot
necessarily be discarded.
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Poloidal Flow
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Energy balance between flows and turbulence
including the eleciron parallel dynamic

Electron parallel conduction fast fime scale StoLTZFUS-DUECK, POP 23 054505 AMO._ Ov
m leads to
~ ~ ~2\ ; 2
IV ~ Do A g
e rco)? ™ K105
1\ // O 3@0 e e0
Thermal free energy non-zonal ExB energy Zonal ExB energy
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Clear drop in electric fields and velocities during the
L-H transition, except for the RF heated discharges

L-H at 144.85 cm from CllI- Emissions 138114 L-H at 144.85 cm from Clll- Emissions 141747
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