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Motivation and outline

* Non-axisymmetric divertor footprints with 3-D fields are concern
for future machines due to 3-D erosion and re-deposition

« 3-D footprints are strongly affected by plasma response 2>
measurement is compared to field line tracing

— Vacuum field line tracing
— Ideal plasma response model (IPEC)
— Different response for n=3 and n=1

» Understanding of common underlying physics over multiple
machines is important
— Compact size of NSTX offers a chance of wide view of divertor
— KSTAR has 3 rows of coils = fine tuning of field spectra is possible
— Same analysis tools (plasma response, footprint measurements, etc)

@NSTX-U IAEA FEC, Shielding and amplification of applied 3-D fields in NSTX and KSTAR, J-W. Ahn, 17 — 22 Oct, 2016



Z(m)

NSTX 3-D field coils and diagnostics

2-D wide angle visible

camera, nearly full ® B, sensors
: ) -eamera P=255° Stabilizer
! - J plates
’ Wi 2-D dual band
B 1IN N IR camera, ®=135°
| g USXR array
L4
e TS and
------- —— ".
’ aj?? CHERS
f
7% 3-D field coil
-1 :
— B, sensors )
3-D field coils
| R 3-D fields (n=1, 2, 3) applied by
00 o5 10  1s 20 mid-plane EFC coils

@NSTX-U IAEA FEC, Shielding and amplification of applied 3-D fields in NSTX and KSTAR, J-W. Ahn, 17 — 22 Oct, 2016



Field line tracing identifies lobes in the X-point region
generated by 3-D fields, w/ and w/o plasma response
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« 3-D fields induce 3-D topology of perturbed field lines = lobe of homoclinic tangles
« Field line tracing simulation provides magnetic structure of 3-D lobes
— Provide Poincare plot, divertor footprint, field line connection length profile, etc.

— Compare results from vacuum approximation to that with ideal plasma
response (IPEC)
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Vacuum approximation in agreement with footprints
measurement for n=3 perturbation
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Ideal plasma response shields applied 3D fields but
overall structure is similar to vacuum result for n=3
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« Weakening effect from IPEC is affected
by location of ideal plasma boundary

» Envelope of lobes not changed by
response

* L. profile inside separatrix shows
180 270 modification of stochasticity and clear

Toroidal angle (degree) shielding effect by ideal plasma response
K. Kim, PPCF 57 (2015), 104002
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Shielding of resonant fields and amplification of kink
response lead to weaker footprint splitting for n=3
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« Resonant components are strongly shielded by ideal plasma response
* Non-resonant kink excitation is also observed

« Combined net effect is to shield the applied n=3 fields and weaken magnetic
separatrix splitting
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n=1 perturbation is very sensitive to plasma response —
amplification of footprint splitting is observed
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* Ideal plasma response dramatically amplifies n=1 separatrix splitting
—> better agrees with camera image

» Plasma response not only modifies amplitude, but also changes envelope of
striations, unlike n=3
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Strong kink excitation appears to be responsible for
amplification of footprint splitting for n=1
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» Resonant components are very weak in vacuum modeling and the ideal response
only slightly shields them

* Non-resonant kink excitation is very strong
« Combined net effect is to significantly amplify the applied n=1 fields and splitting
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KSTAR can produce various 3-D field configurations
with 3x4 array of internal coils

 This allows complete toroidal rotation of phase shift between upper
and lower row of coils for n=1 (A¢ = 0 — 360°)

2 phase configurations for n=2 (0° and 90°)
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Continuous phase swing in n=2 produced obvious change in
plasma parameters
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Ideal plasma response weakens divertor footprint splitting
pattern and provides better agreement with measurement
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» IPEC weakens splitting for both 0° and 90° phases

» Agreement of radial location of lobes between measurement and field line tracing
becomes better when ideal plasma response is included

* Some lobes are not caught in measurement - transport effect?
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Net effect of plasma response leads to shielding of applied
3-D fields and footprint splitting for n=2
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* How to quantify the net effect of resonant shielding and non-
resonant excitation of 3-D fields? - calculate surface average
of normal fields for whole flux surface at each radial point

* Plasma response reduces surface averaged normal fields for whole
radial cross section for n=2, ie shielding of applied 3-D fields -
consistent with the weakening of splitting from field line tracing
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Peak heat flux and splitting becomes stronger for resonant
phases of n=1
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* Phase scan of n=1 fields using only upper and middle coils (A¢,,= 0 — 360°)
* No ELM suppression (l,,e~3 — 4 KA, |,4~2.5 kA)
 Peak heat flux increases during resonant phases (A¢ = 90 — 180°)

—> similar trend as for n=2

« Splitting is strongest for resonant phases (A¢, ~ 90 — 180°), - Contrary to n=2
(stronger splitting for non-resonant phase, A¢ ~ 0°)
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Plasma response shields or amplifies applied n=1 fields,
depending on phase

Ave. normal field at boundary
» Comparison of 3-D fields at plasma
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Poloidal spectrum analysis again shows similar trend for
resonant and non-resonant fields as in n=2
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 0° phase is non-resonant and Kink excitation is only weak
* 150° phase is very resonant - kink excitation is very strong

* Net effect is to be shown by profile of averaged normal field
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Phase variation determines plasma response to
applied 3-D fields
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* Normal field profile is decreased by plasma response for 0° phase

* For 1509, it is mostly strong amplification but shielding occurs in the
core region near magnetic axis

* Phase variation strongly affects reaction of plasma to applied fields -

leads to shielding or amplification of magnetic lobes and 3-D heat and
particle flux pattern

@NSTX-U IAEA FEC, Shielding and amplification of applied 3-D fields in NSTX and KSTAR, J-W. Ahn, 17 — 22 Oct, 2016

17



Intentionally misaligned 90° n=1 fields effectively spread heat
flux to lower peak value with increasing misalignment
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However, it’s not yet clear how small misalignment led to
significant change in divertor footprints

Flux surface displacement from ideal plasma response (IPEC)
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* Only very small (<5%) difference of external fields due to misalignment

» Plasma response (IPEC) does not produce significant difference in field
structure by misalignment

* How can the difference in IR heat flux be explained? Bifurcation?
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Summary and conclusions

» Applied 3-D fields can be either shielded or amplified depending on field
configurations and phase, leading to modification of divertor footprints

« NSTX: wide view of divertor area allows for easier comparison to modeling
— Ideal plasma response weakens n=3 footprint splitting, primarily due to shielding
effect of resonant components. Sensitive to location of simulation boundary
— Envelope of lobes for n=3 is not changed by plasma response

— ldeal plasma response significantly amplifies vacuum n=1 footprints, due to strong
non-resonant kink excitation

 KSTAR: three rows of coils enable to fine tune structure of applied 3-D fields
— n=2 fields are shielded by plasma response for both 0° and 90° phase, therefore
footprints are weakened compared to vacuum result
— n=1 fields are either shielded or amplified depending on phase shift between upper
and lower caoils.

— Slight misalignment effectively broadened heat flux profile and reduced peak heat
flux, but the underlying physics is still not clear yet
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