Kinetic profiles and impurity transport response to 3D-field triggered ELMs in NSTX

26th IAEA Fusion Energy Conference

Oct.16-23, 2016 – Kyoto, Japan

F. Scotti, ¹W. Guttenfelder, V.A. Soukhanovskii, ¹R.E. Bell, ³G.P. Canal, ²J.M. Canik, ¹A. Diallo, ¹B.P. LeBlanc, ¹S.P. Gerhardt, ¹M. Podesta' LLNL, ¹PPPL, ²ORNL, ³GA

NSTX Upgrade

U.S. DEPARTMENT OF

Office of

Science

LLNL-PRES-663423

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences., Lawrence Livermore National Security, LLC

Summary/Outline

- NSTX H-mode discharges characterized by limited density control
- Lithium-conditioning + paced ELMs candidate scenario for particle control in NSTX-U
- Increase in RMP-triggered ELM frequency (0-60 Hz) leads to a progressive reduction in n_c at the pedestal top
- T_i profiles changes due to paced ELMs led to changes in carbon neoclassical coefficients
 - opposite to those observed in the transition from ELMy boronized discharges to ELM-free lithiated discharges
- Agreement of inter-ELM carbon transport with neoclassical estimates improved with the increase in paced ELM frequency
- Quasi-linear fluxes from hybrid KBMs of similar magnitude (opposite direction) of anomalous neoclassical fluxes in ELM-free discharges
 This work was supported by U.S. DOE Contracts: DE-AC02-09CH11466, DE-AC52-07NA27344, DE-AC05-000R22725, DE-SC0012706.

2 🖳

NSTX H-mode discharges characterized by limited density control

- Limited density control in NSTX H-mode discharges
 - Uncontrolled D inventory w/ boronized PFCs
 - Type I/mixed Type I-Type V ELMs
 - Uncontrolled C inventory w/ lithiated PFCs
 - ELM-free
- Baseline scenarios in NSTX-U:
 - D control via cryopump w/ boronized PFCs0004
 - Impurity mitigation w/ lithiated PFCs
- Impurity control techniques based on:
 - Enhanced core impurity transport
 - Triggered ELMs via RMPs or impurity granules 0.5
 - Optimized lithium dose (natural ELMs)
 - Reduction of sources

NSTX-L

- Divertor detachment
- Upward lithium evaporation
- Reduction of divertor impurity leakage
 - Deuterium divertor gas puff

ELM-free lithiated discharges

F. Scotti, NF 2013.

E Sootti NE 2012

RMP-triggered ELMs applied on NSTX to mitigate impurity accumulation

- Resonant magnetic perturbations produced via external midplane coils (4 ms, 3 kA, n=3) [1]
- ELM-pacing up to 62.5 Hz achieved [2,3]
- Large ELMs induced by magnetic perturbations [3]
 - $\Delta W/W \sim 15\%$ at $f_{ELM} = 10 \text{ Hz}$
 - Δ W/W ~ 5% at f_{ELM} = 60 Hz

NSTX-U

- Overall reduction of 10-15% in stored energy at high f_{ELM}
- No enhanced particle transport observed with application of sub-threshold n=3 fields [4]

[1] J. Canik, PRL 2009.[3] J. Canik, NF 2010 - 2.[2] J. Canik, NF 2010 - 1.[4] J. Lore, JNM 2013.

4 L

Reduction in Z_{eff}, core P_{rad} and n_e ramp rate with increase in ELM frequency

- Increasing paced-ELMs frequency 0→60Hz:
 - Reduced n_e ramp rate
 - Decrease in Z_{eff} , core P_{rad}
 - Increase in neutron flux
- Confinement degraded at high f_{ELM} due to onset of MHD activity (n=1)
 - 133818 at t=0.8 s

Lithium evaporative coatings: 250 mg Lower biased double null $\delta_{r-sep} \sim 5-6$ mm $I_p = 800$ kA, $P_{NBI} = 6MW$ Strong shaping $\kappa \sim 2.4$, $\delta \sim 0.8$ Naturally ELM-free discharges

Ref., 10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz

Total particle inventories controlled through reduction of edge inventories and unaffected core

- With RMP-triggered ELMs:
 - Progressive reduction in C and e inventories
 - ~ stationary inventories achieved at highest f_{ELM}
- D inventory controlled via lithium pumping
- Inventory reduction due to reduction in particle content in the edge (x2) with core impurity content unaffected
 - Changes in C transport beyond ELM-flushing
 - Motivates analysis of profile changes and impurity transport induced by ELMs

Conditional averaging applied to fit kinetic profiles during ELM cycle

- Conditional averaging over <u>paced</u> ELM cycle used to accumulate T_e, n_e, T_i, v_{tor}, n_c profiles
 - Profiles evolution recovering from RMP-ELM crash
 - Profile changes between shots at same fraction of ELM cycle
- Modified tanh function fitted to T_e, n_e, p_e profiles
- Spline fits for T_i, v_{tor}, n_c

NSTX-U

 Kinetic EFITs via Osborne python tools

A. Diallo, Invited APS-DPP 2011.

$$N(\psi) = A \tanh\left(\frac{\psi_{sym} - \psi}{\psi_{width}}\right) + offset$$

R. Groebner and T. Osborne PoP (1998)

╯╚

Reduction in pedestal T_e, T_i, P_e, n_e following 10Hz ELMs crash

- T_e, n_e, p_e, T_i profile crash due to triggered ELM
- Profile recovers to ELMfree values within 100 ms
- Quick recovery of steep gradient region, slower recovery of pedestal top
- Increase in f_{ELM} led to progressively smaller effects on pedestal profiles

8 👢

Large changes in n_e, P_e, T_i saturated profiles with increase in ELM frequency

- "Saturated" profiles from last 25% of paced ELM cycle
- Electron profiles clamped near separatrix
- Progressive reduction in n_C, n_e for at pedestal top
- Different behavior for T_i, v_t profiles
 - 3-4X increase in gradient at ψ_N=0.6-0.7
 - Effect on edge collisionality and neoclassical drivers

NSTX-U

With increase in f_{ELM} carbon density at inner radii progressively flushed

- For 10Hz ELMs n_c recovers to ELM-free profile towards the end of ELM-cycle
- Increase in f_{ELM} flushes carbon at smaller radii
 - Edge n_c halved outside ψ_N =0.4
- Changes in density profiles indicate change in impurity transport for ψ_N =0.4-0.8
 - Beyond the simple ELM-flushing
 - Motivates carbon transport analysis

Deviations from neoclassical carbon transport observed in lithiated ELM-free discharges

- In NSTX ion transport close to neoclassical levels [Kaye, NF 2008]
- Impurity transport close to neoclassical

NSTX-L

- Deviations in lithiated discharges [Scotti NF 2013]
- Changes in main ion profiles due application of lithium lead to changes in carbon neoclassical convection (NCLASS, NEO)
- Disagreement between experimental profiles and neoclassical predictions at top of pedestal

Carbon neoclassical transport modified due to changes in main ion profiles with ELMs

- δf neoclassical code NEO used to estimate carbon neoclassical transport
 - NEO run on 100 different profiles based on experimental error
 - Scan in n_c scale length for D, v determination from radial fluxes
 - Classical component included via NCLASS simulations

STX-L

• Rotation effects included but negligible (in/out asymmetry~10%, D enhancement~30%)

[Belli, PPCF 2008]

[Belli, PPCF 2009]

- T_i, n_D changes due to triggered ELMs modify neoclassical C coefficients
 - Changes in convective velocity at pedestal top: inward to outward (due to ∇ Ti)
 - Comparable and opposite to changes observed after lithium introduction

Deviations from neoclassical carbon transport reduced with triggered ELMs

- Comparison of neoclassical peaking v/D and steady state n_c normalized gradient
- Both cases agree in the steep gradient region
- Carbon density profiles in ELM-free discharges deviate from neoclassical transport
 - Weaker edge peaking than predicted by NEO
- Better agreement with NEO predictions with triggered ELMs
 - Similar to naturally ELMy discharges with comparable changes in Ti

F. Scotti, Impurity transport following RMP-triggered ELMs in NSTX

🗕 13 👢

KBM quasi-linear fluxes comparable and in opposite direction

to anomalous neoclassical fluxes in ELM-free discharges

- Linear gyrokinetic GYRO simulations to assess anomalous contributions
 - Kinetic D, C, e, collisional and full em effects
- ELM-free:
 - Hybrid KBM at r/a=0.8, MT at 0.5-0.75 ($k_{\theta}\rho_{s}$ <1)
- 50 Hz ELMy:

NSTX-U

- No MT, mixed ballooning activity
- Carbon fluxes from quasi-linear fluxes scaling electron fluxes to experimental TRANP Q_e ($k_{\theta}\rho_s$ <1)
 - In ELM-free discharges KBM modes at r/a=0.8-0.85 provide outward particle flux
 - Similar to the anomalous neoclassical carbon flux (up to 3-6x10¹⁹ /m²/s, extending between r/a 0.65-0.9)

MIST used to simulate n_c profile recovery following 10 Hz triggering

12.00

1.0

0.8

(cm) suita (cm)

12.38

Log10 (Nc [cm-3])

12.75

13.12

15

13.50

- MIST impurity transport code used to study impurity recovery after ELM
 - Time dependent runs

NSTX-L

Profile recovery based on steady state v, D faster than observed experimentally

- Method:
 - v/D from steady state profiles, D neoclassical
 - Perturbation to match first CHERS frame after ELM
 - Profile recovery using steady state v, D
- Match CHERS frame after ELM with:
 - outward velocity + increased diffusivity for 0.6<R_{VOL}<0.8
 - Inward pinch for R_{VOL}<0.5
- Profile recovery simulated based on steady state v/D scaled to neoclassical D:
 - Recovery is too fast
 - Matching recovery keeping steady state v/D would require transport level below neoclassical
 - Suggest transport is changing during the profile recovery, consistent with previous observations

