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Beam	emission	spectroscopy	captures	the	nonlinear,
Alfven-scale	dynamics	of	ELM	events

• Edge	localized	modes	(ELMs)	are	peeling-
ballooning	instabilities	in	the	edge/pedestal	
region	driven	by	pressure	and	current	gradients
– Unmitigated	ELMs	pose	risk	for	ITER

• Nonlinear	mechanisms	impact	ELM	dynamics
– Broadly:	NL	mode	coupling,	saturation	mechanisms,	

filament	dynamics
– Hyper-resistivity	is	key	for	realistic	ELM	radial	

penetration	(X.	Xu	et	al,	PRL,	2010)
– Growth	of	sub-dominant	linear	modes	in	the	NL	phase	

(M.	Holzl et	al,	PoP,	2012)
– EHOs	attributed	to	saturated	PB	modes	(K.	Burrell	et	al,	

PRL,	2009)

• Common	diagnostic	tools and	analysis	methods	
do	not	capture	the	nonlinear,	Alfven-scale	
dynamics	of	ELMs
– Heuristic	classification	schemes	(Type	I,	III,	etc.)
– Sub-Alfvenic measurements	with	Thomson	scattering	

and	filterscopes
– Linear	stability	threshold	for	peeling-ballooning	modes
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Fusion	facilities	with	large	data	archives	can	exploit
machine	learning	tools	for	large-scale	analysis	tasks

• Possible	machine	learning	applications	in	fusion	science
– Identify	common	evolution	patterns	for	ELM	events
– Untangle	high-dimensional	relationships	at	the	LH	transition
– Autonomously	find	and	classify	disruptions	in	a	data	archive
– Analyze	data	at	scales	not	possible	with	manual	inspection
– NSTX/NSTX-U:	About	40	TB	of	data	obtained	with	R&D	investment	

approaching	$1B

• Many	data-rich	scientific	fields	successfully	leverage	machine	
learning	techniques
– Applications:	Cancer	genomics,	exo-planet	detection,	seismic	wave	

classification,	seizure	onset	prediction,	Higgs	boson
– High-level	initiatives	from	funding	agencies
– Intersection	of	experimental	science	and	high	performance	computing
– Many	“canned”	algorithms	in	Matlab,	SciPy,	etc.

ELM	Evolution	Patterns	on	NSTX-U	|	D.	Smith	|	IAEA-2016 3



ELM	evolution	patterns	on	NSTX/NSTX-U

• Beam	emission	spectroscopy	(BES)	system	on	
NSTX/NSTX-U

• Identification	of	ELM	evolution	patterns	with	
unsupervised	machine	learning	analysis	on	NSTX
– Time-series	similarity	metrics
– Hierarchical	and	k-means	cluster	analysis
– Parameter	regimes	for	identified	evolution	patterns

• 2D	measurements	of	ELM	events	from	NSTX-U
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Beam	emission	spectroscopy	(BES)	measures	Doppler-shifted
Daa emission	from	a	deuterium	heating	beam
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Radial	and	poloidal coverage	on	NSTX
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NSTX

D.	Smith	et	al,	RSI	81,	10D717	(2010)
N.	Schoenbeck et	al,	RSI	81,	10D718	(2010)
D.	Smith	et	al,	RSI	83,	10D502	(2012)

High-throughput,	field-aligned
collection	optics

• Measurements	are	sensitive	to	density	
fluctuations	on	the	ion	gyroscale with	
k⊥ri ≤	1.5

• Applications:	ELMs,	LH	transition,	
EHOs,	turbulence,	velocimetry,	Alfven
eigenmodes,	etc.

2.5-3	cm	
spot	sizes
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Low	noise,	high	quantum	efficiency	detectors	achieve
photon-noise-limited	measurements	up	to	about	500	kHz
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8-channel	module

Vacuum	box	with
refrigerant	lines

Fiber	mount,	
collimating	lens,	

and	filter

PIN	photodiode	(0.45	A/W)
and	pre-amp	circuit

Designed	&	fab’ed by
UW	Space	Astro.	Lab

48-channel	(6	modules)
detection	system

Digitizers:	2	MHz	sampling	with	
onboard	FPGA-based	FIR	filter
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BES	measurements	capture the	Alfven-scale	evolution
and	radial	profile	of	ELM	events
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Goal	– Identify	common	evolution	patterns	(if	any)
in	a	database	of	Type	I	ELM	time-series	data

• Database	of	51	ELM	events	measured	with	BES
– 8	radial	BES	channels	spanning	pedestal	region
– 34	NSTX	discharges	from	8	run	days	spanning	4	months
– 1%-16%	stored	energy	loss	and	observable	pedestal	collapse
–Most	likely	type	I	ELMs
– Time-series	from	radial	measurements	condensed	into	single	
time-series	with	principle	component	analysis
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Method	– Apply	unsupervised	machine	learning	techniques
to	identify	common	ELM	evolution	patterns

• Hierarchical	clustering
– Produces	a	multi-level	hierarchy	of	objects
– Popularized	in	genomics
– Requires	an	similarity	metric	to	quantify	

similarity	among	time-series

• Time-series	similarity	metrics
– Time-lag	cross-correlation
– Euclidean	distance
– Dynamic	time	warping	(DTW)
– Wavelet	decomposition

• K-means	clustering
– Partition	observations

into k mutually
exclusive clusters
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Prat et	al,	Scientific	Reports	3,	3544	(2013)

D.	Smith	et	al,
PPCF	58,	045003	
(2016)

Mathworks.com
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Hierarchical	clustering	(I)	– Assemble	time-lag	cross-
correlation	metrics	into	a	dissimilarity	matrix

Time-lag	cross-correlation	can	
quantify	the	similarity	of	ELM	
time-series	data
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Assemble	pair-wise	metrics	
into	a	dissimilarity	matrix

Larger	max	correlation	➞more	similar

Blue	=	high
similarity

Red	=	low
similarity
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Hierarchical	clustering	(II)	– Apply	clustering	algorithm	to	
dissimilarity	matrix	to	identify	groups	of	similar	ELMs
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D.	Smith	et	al,	PPCF	58,	045003	(2016)

High
similarity

Low
similarity

Colors preserved	in
remainder	of	presentation

Blue	squares on
diagonal are	good
candidate	clusters
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The	identified	ELM	groups
show	similar	evolution	characteristics
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K-means	clustering	– Group	objects	into
mutually	exclusive	groups

• Requires	extrinsic	similarity	metrics
– Designate	benchmark	ELMs	to	serve	as	extrinsic	metrics

• Utilize	PCA	to	visualize	high-dim.	results	in	low-dim.	sub-space
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#	of	clusters Mean	ratio*

2 0.49

3 0.51

4 0.52

5 0.48

6 0.46

7 0.45

6	benchmark	ELMs

*Out-of-cluster/in-cluster	distance	ratio

Optimal

D.	Smith	et	al,
PPCF	58,	045003
(2016)

4th group?

Clusters	are	highly	consistent	for	calculations	
with	different	benchmark	ELMs
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k-means	clustering	and	hierarchical	clustering	yield	
consistent	results

• Red, Blue, and	Green groups	in	k-means	
results	are	largely	consistent	with	
previous	hierarchical	cluster	results
• The	Cyan	group	in	k-means	corresponds	
to	poorly	linked	ELMs	in	the	hierarchical	
cluster
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Colors correspond	to	k-means	clusters D.	Smith	et	al,	PPCF	58,	045003	(2016)
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ELM	evolution	patterns	identified	with
machine	learning	techniques
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Next	step:	autonomously	discover	and	tag	ELMs	in	the	NSTX/NSTX-U	data	archive
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The	identified	ELM	groups	correspond	to	parameter	regimes	
for	Ip,	𝜅𝜅𝜅𝜅,	dRsep,	and	ne,ped,	but	not	stored	energy	loss
The	identified	ELM	
groups	exhibit	similar	
stored	energy	loss	…

…	but	different	regimes	for	ELM-relevant	
parameters	like	plasma	current,	magnetic	balance,	
elongation,	and	pedestal	density	height

Individual	ELMs
20th,	50th,	&	80th percentile	values

Work-in-progress:		NL	BOUT++	simulations	to	investigate	the	
identified	ELM	groups	and	parameter	regimes
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Upgraded	2D	coverage	on	NSTX-U

ELM	Evolution	Patterns	on	NSTX-U	|	D.	Smith	|	IAEA-2016

2D	fiber	assembly
w/	54	bundles	of	3x3	fibers

Designed	&	fab’ed
by	UW	Phys.	Sci.	Lab

NSTX-U

2D	grid	contoured
for	typ.	flux	surfaces
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2D	BES	measurement	of	ELM	event	on	NSTX-U
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2D	BES	measurement	captures	downward	motion
of	ELM	structure



Summary

• BES	measurements	with	Alfvenic time	resolution	capture	the	
nonlinear	evolution	of	ELM	events	on	NSTX

• Unsupervised	machine	learning	algorithms	identified	groups	
of	ELMs	with	similar	evolution	characteristics
– The	identified	ELM	groups	correspond	to	specific	parameter	regimes	

relevant	to	ELM	physics:	Ip,	k,	dRsep,	ne,ped
– Working	towards	NL	simulations	to	clarify	the	mechanisms	at	play	in	

the	identified	ELM	groups	and	parameter	regimes
– D.	Smith	et	al,	PPCF	58,	045003	(2016)

• 2D	BES	measurements	are	now	available	on	NSTX-U

• Excellent	opportunities	to	exploit	machine	learning	tools	for	
analysis	tasks	not	feasible	with	manual	inspection
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