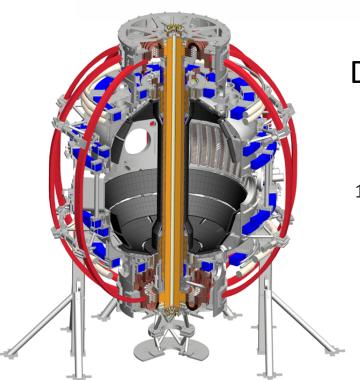


Identification of characteristic ELM evolution patterns with Alfven-scale measurements and unsupervised machine learning analysis



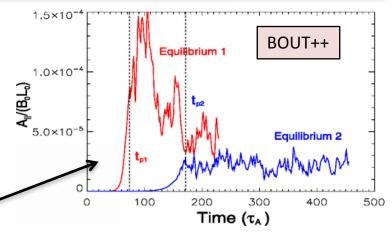
David R. Smith¹, G. McKee¹, R. Fonck¹, A. Diallo², S. Kaye², B. LeBlanc², S. Sabbagh³, and B. Stratton²

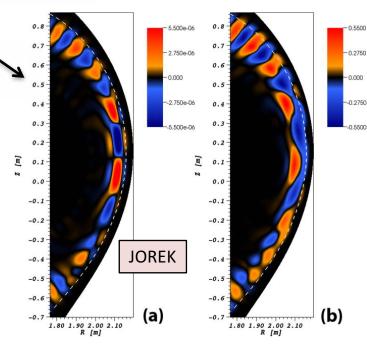
¹U. Wisconsin-Madison, ²PPPL, ³Columbia U.

26th IAEA Fusion Energy Conference Kyoto, Japan October 17-22, 2016

Beam emission spectroscopy captures the nonlinear, Alfven-scale dynamics of ELM events

- Edge localized modes (ELMs) are peelingballooning instabilities in the edge/pedestal region driven by pressure and current gradients
 - Unmitigated ELMs pose risk for ITER
- Nonlinear mechanisms impact ELM dynamics
 - Broadly: NL mode coupling, saturation mechanisms, filament dynamics
 - Hyper-resistivity is key for realistic ELM radial penetration (X. Xu et al, PRL, 2010)
 - Growth of sub-dominant linear modes in the NL phase (M. Holzl et al, PoP, 2012)
 - EHOs attributed to saturated PB modes (K. Burrell et al, PRL, 2009)
- Common diagnostic tools and analysis methods do not capture the nonlinear, Alfven-scale dynamics of ELMs
 - Heuristic classification schemes (Type I, III, etc.)
 - Sub-Alfvenic measurements with Thomson scattering and filterscopes
 - Linear stability threshold for peeling-ballooning modes





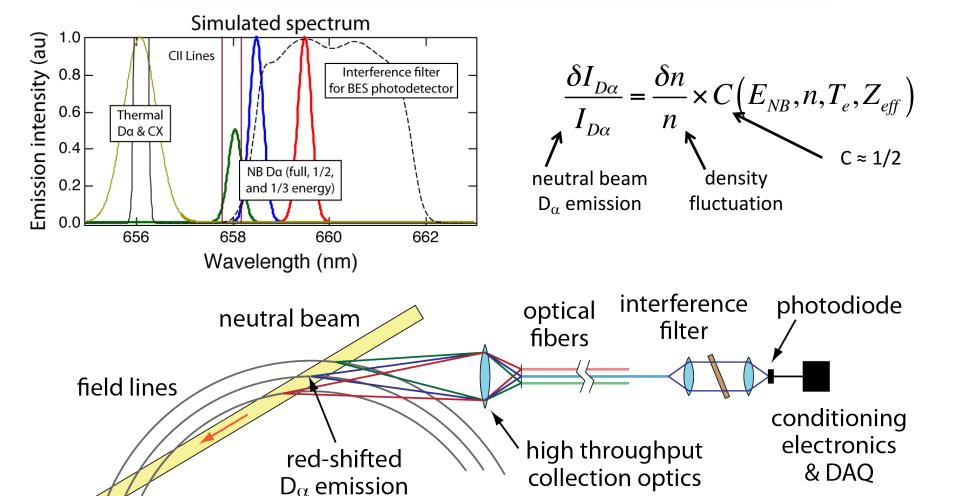
Fusion facilities with large data archives can exploit machine learning tools for large-scale analysis tasks

- Possible machine learning applications in fusion science
 - Identify common evolution patterns for ELM events
 - Untangle high-dimensional relationships at the LH transition
 - Autonomously find and classify disruptions in a data archive
 - Analyze data at scales not possible with manual inspection
 - NSTX/NSTX-U: About 40 TB of data obtained with R&D investment approaching \$1B
- Many data-rich scientific fields successfully leverage machine learning techniques
 - Applications: Cancer genomics, exo-planet detection, seismic wave classification, seizure onset prediction, Higgs boson
 - High-level initiatives from funding agencies
 - Intersection of experimental science and high performance computing
 - Many "canned" algorithms in Matlab, SciPy, etc.

ELM evolution patterns on NSTX/NSTX-U

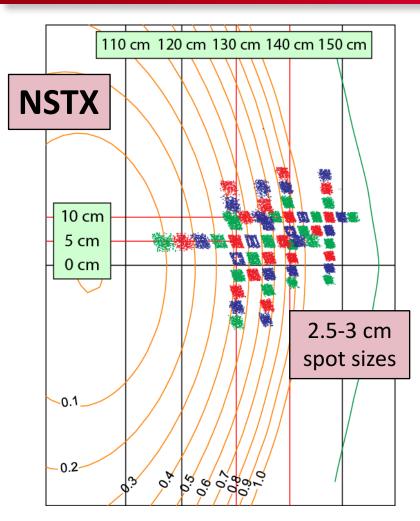
- Beam emission spectroscopy (BES) system on NSTX/NSTX-U
- Identification of ELM evolution patterns with unsupervised machine learning analysis on NSTX
 - Time-series similarity metrics
 - Hierarchical and k-means cluster analysis
 - Parameter regimes for identified evolution patterns
- 2D measurements of ELM events from NSTX-U

Beam emission spectroscopy (BES) measures Doppler-shifted D_{α} emission from a deuterium heating beam



R. Fonck et al, PRL 70, 3736 (1993)

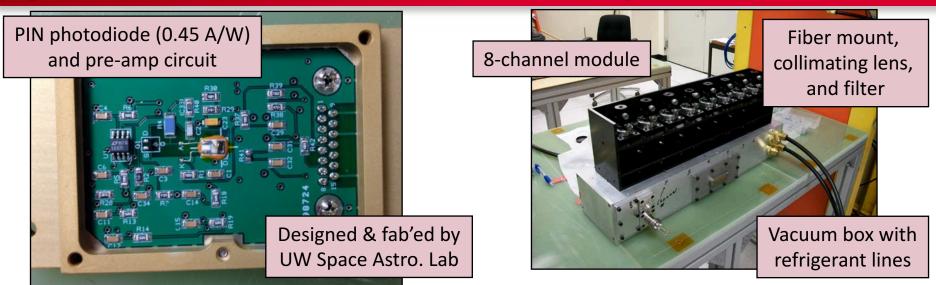
Radial and poloidal coverage on NSTX



- D. Smith et al, RSI 81, 10D717 (2010)
- N. Schoenbeck et al, RSI 81, 10D718 (2010)
- D. Smith et al, RSI 83, 10D502 (2012)

- Measurements are sensitive to density fluctuations on the ion gyroscale with $k \mid \rho_i \le 1.5$
- Applications: ELMs, LH transition, EHOs, turbulence, velocimetry, Alfven eigenmodes, etc.

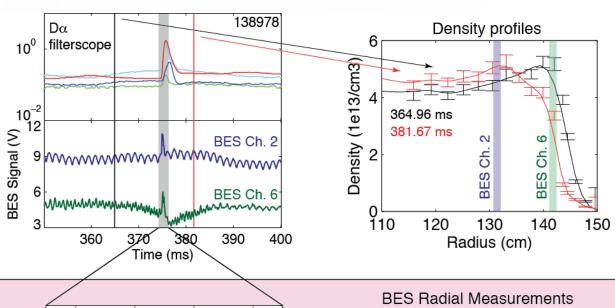
Low noise, high quantum efficiency detectors achieve photon-noise-limited measurements up to about 500 kHz





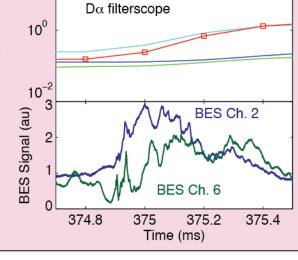
BES measurements capture the Alfven-scale evolution and radial profile of ELM events

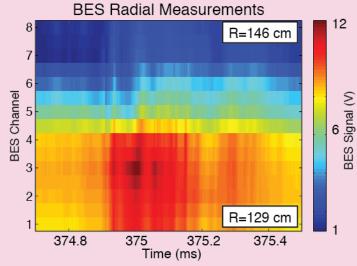
Common measurements for ELM characterization do not capture the Alfven-scale evolution of ELM events



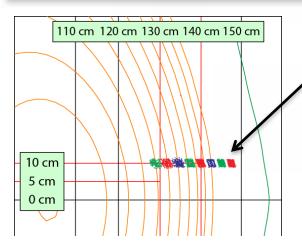
BES captures the Alfven-scale evolution and radial variation of ELM events

 $\Delta t/\tau_{_{A}} \sim 0.1$

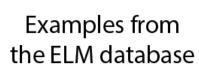


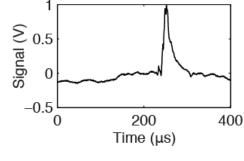


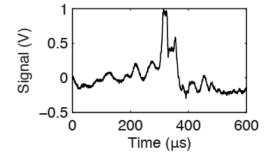
Goal – Identify common evolution patterns (if any) in a database of Type I ELM time-series data

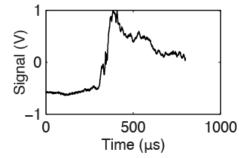


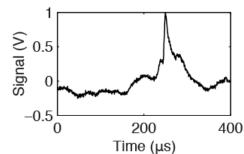
- Database of 51 ELM events measured with BES
 - 8 radial BES channels spanning pedestal region
 - -34 NSTX discharges from 8 run days spanning 4 months
 - -1%-16% stored energy loss and observable pedestal collapse
 - Most likely type I ELMs
 - Time-series from radial measurements condensed into single time-series with principle component analysis

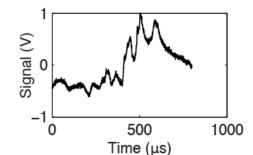


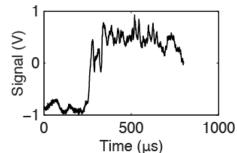










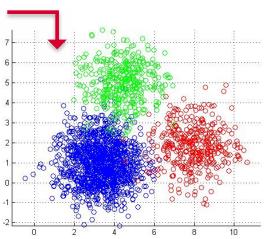


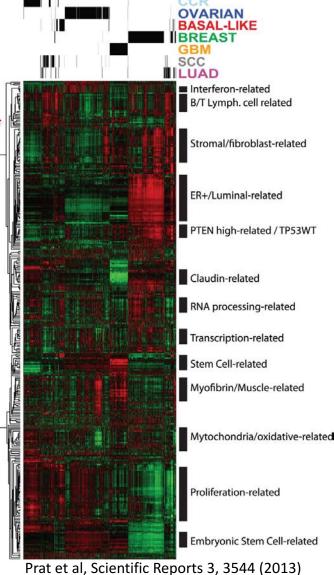
Method – Apply unsupervised machine learning techniques to identify common ELM evolution patterns

- Hierarchical clustering
 - Produces a multi-level hierarchy of objects
 - Popularized in genomics
 - Requires an similarity metric to quantify similarity among time-series
- Time-series similarity metrics
 - Time-lag cross-correlation
 - Euclidean distance
 - Dynamic time warping (DTW)
 - Wavelet decomposition

- D. Smith et al,
 - PPCF 58, 045003
- (2016)

- K-means clustering
 - Partition observations into <u>k</u> mutually exclusive clusters



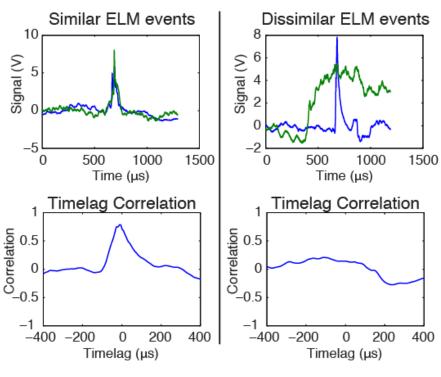


Mathworks.com

Hierarchical clustering (I) - Assemble time-lag crosscorrelation metrics into a dissimilarity matrix

Time-lag cross-correlation can quantify the similarity of ELM time-series data

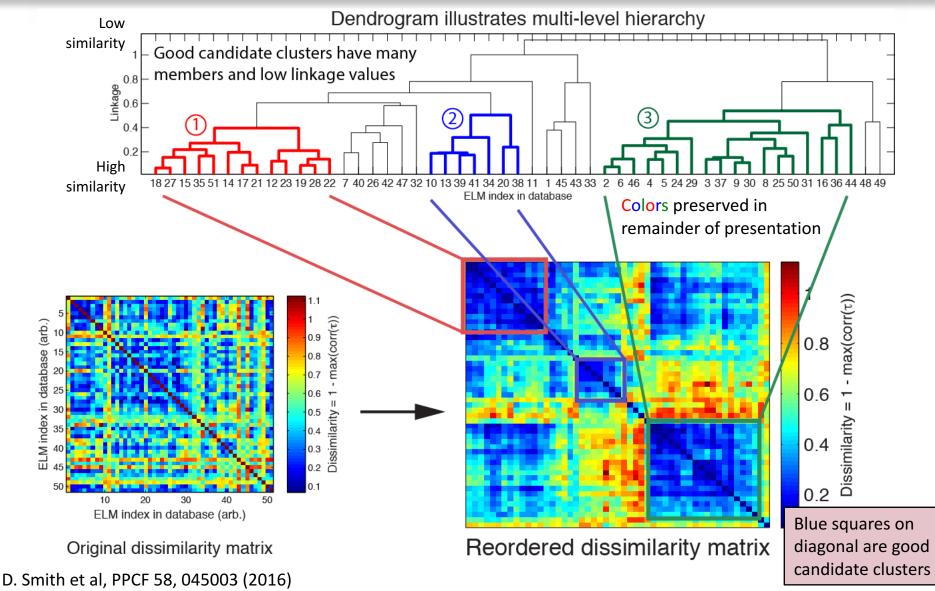
Assemble pair-wise metrics into a dissimilarity matrix



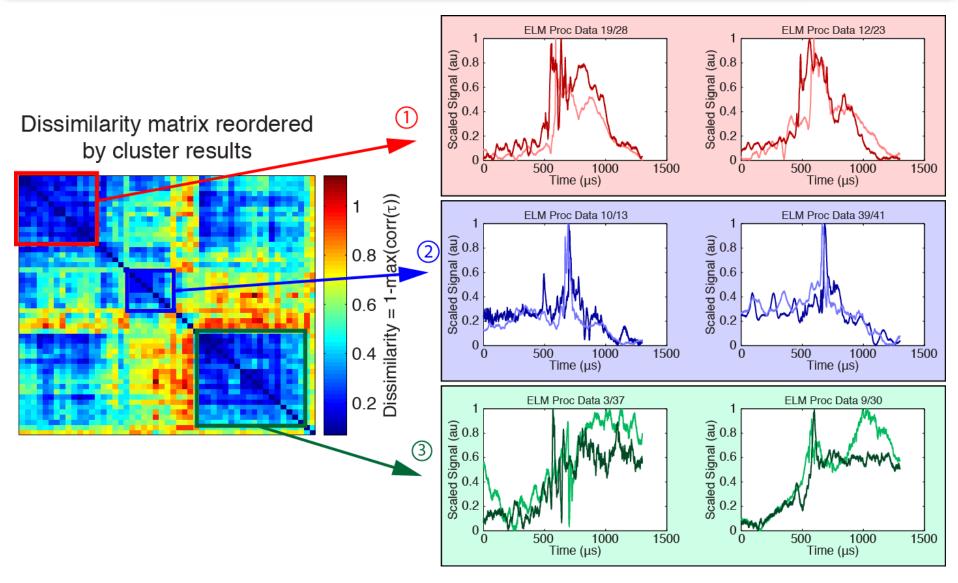
Red = lowCorrelation dissimilarity matrix similarity $max(corr(\tau))$ ELM index in database (arb.) 0.9 15 0.8 0.7 0.6 0.5 0.4 0.3 0.5 Dissimilarity : 0.5 0.1 30 40 50 Blue = high ELM index in database (arb.) similarity

Larger max correlation → more similar

Hierarchical clustering (II) – Apply clustering algorithm to dissimilarity matrix to identify groups of similar ELMs



The identified ELM groups show similar evolution characteristics



K-means clustering – Group objects into mutually exclusive groups

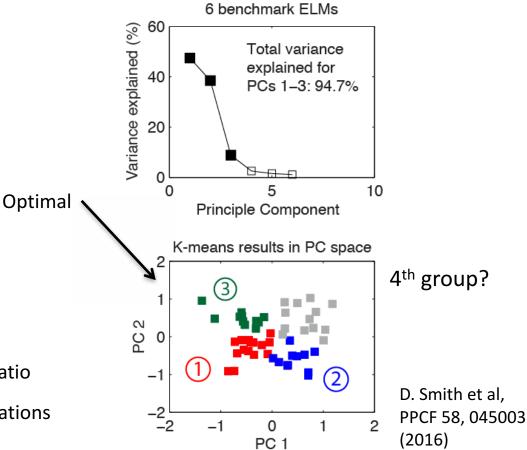
- Requires extrinsic similarity metrics
 - Designate benchmark ELMs to serve as extrinsic metrics
- Utilize PCA to visualize high-dim. results in low-dim. sub-space

	1	- 1				N 4
b	ben	chi	ma	rĸ	ΕL	IVIS

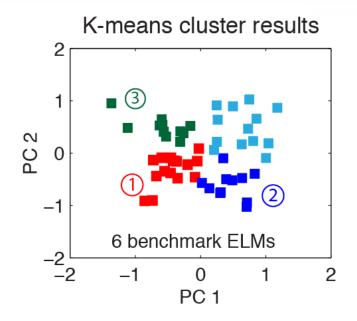
# of clusters	Mean ratio*				
2	0.49				
3	0.51				
4	0.52				
5	0.48				
6	0.46				
7	0.45				

^{*}Out-of-cluster/in-cluster distance ratio

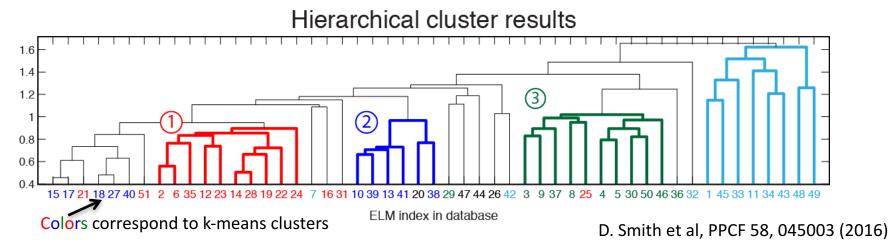
Clusters are highly consistent for calculations with different benchmark ELMs



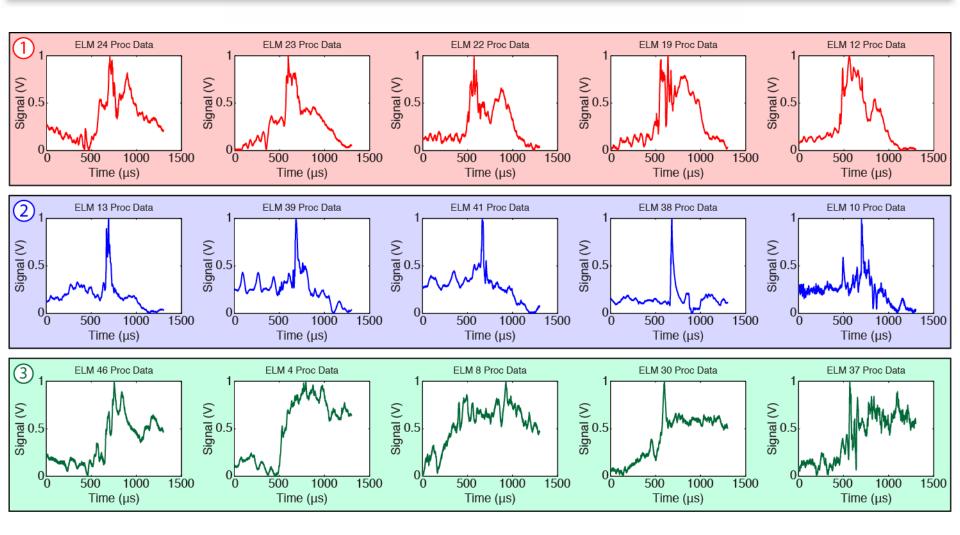
k-means clustering and hierarchical clustering yield consistent results



- Red, Blue, and Green groups in k-means results are largely consistent with previous hierarchical cluster results
- The Cyan group in k-means corresponds to poorly linked ELMs in the hierarchical cluster

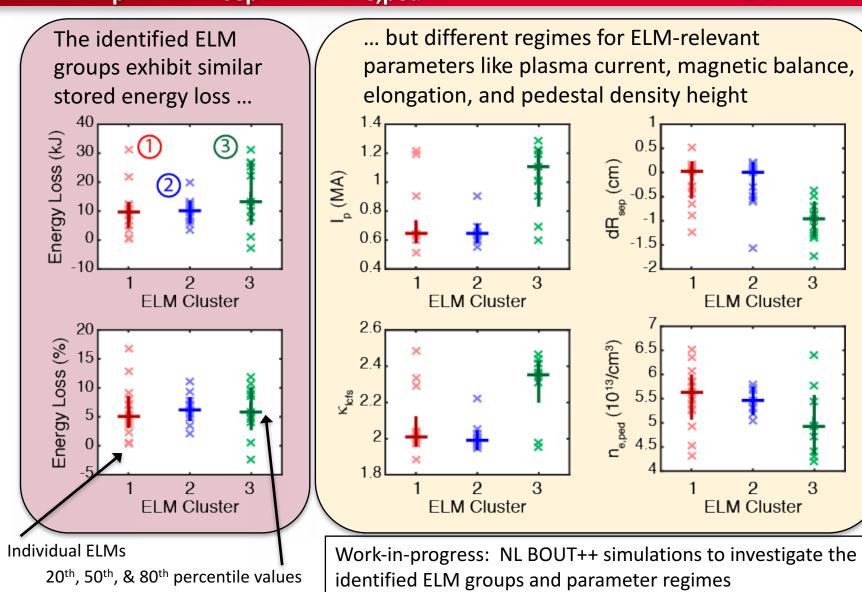


ELM evolution patterns identified with machine learning techniques

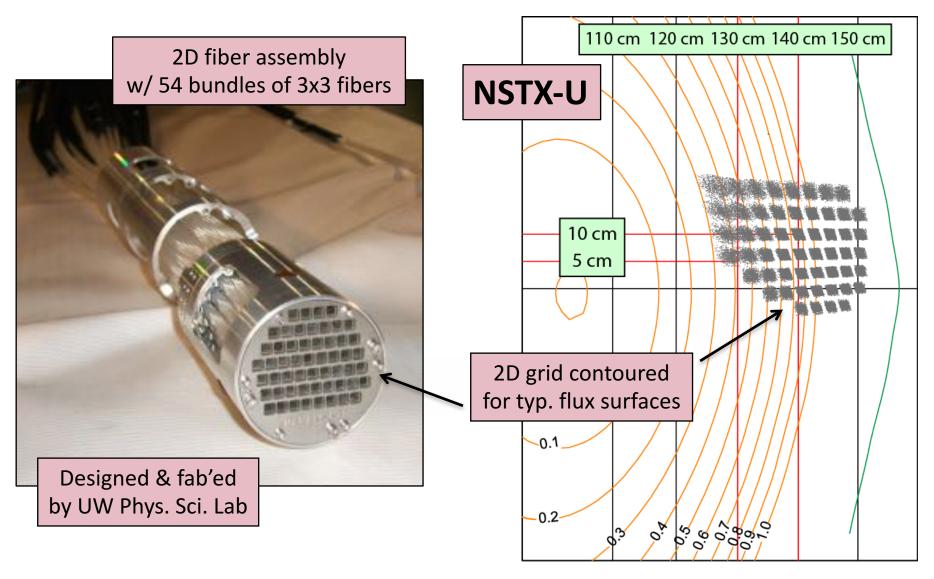


Next step: autonomously discover and tag ELMs in the NSTX/NSTX-U data archive

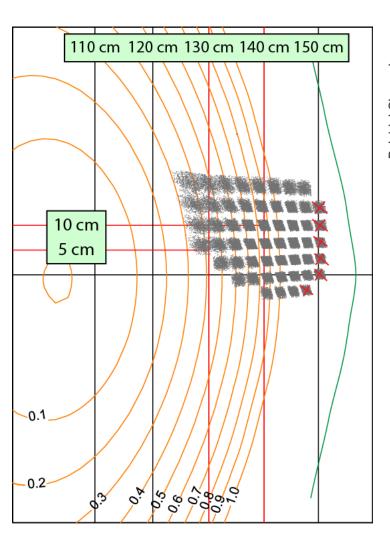
The identified ELM groups correspond to parameter regimes for I_p , κ , dR_{sep} , and $n_{e,ped}$, but not stored energy loss

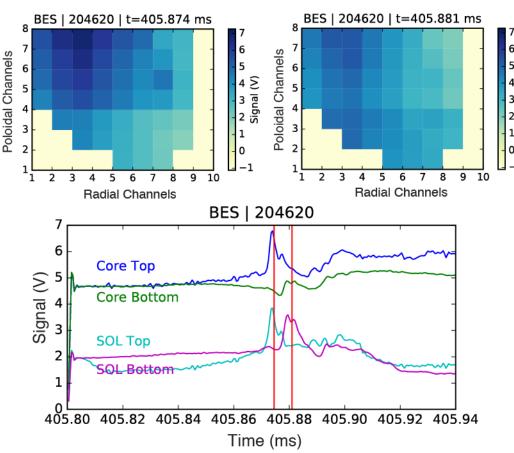


Upgraded 2D coverage on NSTX-U



2D BES measurement of ELM event on NSTX-U





2D BES measurement captures downward motion of ELM structure

Summary

- BES measurements with Alfvenic time resolution capture the nonlinear evolution of ELM events on NSTX
- Unsupervised machine learning algorithms identified groups of ELMs with similar evolution characteristics
 - The identified ELM groups correspond to specific parameter regimes relevant to ELM physics: I_p , κ , dR_{sep} , $n_{e,ped}$
 - Working towards NL simulations to clarify the mechanisms at play in the identified ELM groups and parameter regimes
 - D. Smith et al, PPCF 58, 045003 (2016)
- 2D BES measurements are now available on NSTX-U
- Excellent opportunities to exploit machine learning tools for analysis tasks not feasible with manual inspection

