IAEA FEC 2016

NSTX-U

A multi-machine analysis of non-axisymmetric and rotating halo currents

Clayton E. Myers¹, S. P. Gerhardt¹, N. W. Eidietis², R. S. Granetz³, G. Pautasso⁴, and the ITPA Working Group on Non-Axisymmetric Halo Currents

¹ Princeton Plasma Physics Laboratory, ² General Atomics, ³ MIT Plasma Science and Fusion Center, ⁴ Max-Planck-Institüt für Plasmaphysik

EX/P6-46

Halo current rotation & the ITPA halo current database

Halo currents are driven in the conducting structures of a tokamak when a disrupting plasma contacts the first wall \rightarrow plasma + vessel circuit

Vessel forces are amplified when halo currents are toroidally non-axisymmetric and rotating \rightarrow Will this be a problem for ITER?

Common analytical framework

Fit model function to assess the n = 0 and n = 1 components of the halo currents:

 $I_{\rm h}({\rm t}) = h_0 + h_1 \sin(\phi - h_2)$

Integrate the phase (h_2) to track rotation

Apply standard disruption timing analysis to find current quench time, $t_{CQ} = 5/3(t_{20} - t_{80})$

Normalize to measured characteristic 'fast' current quench time for each device, τ_{CQ}

1.735

Time (s)

1.740

1.745

• C-Mod 2.5 ms

AUG 5.4 ms

• NSTX 4.4 ms

△ DIII-D 5.2 ms

20

25

DIII-D 93199

1.730

| | ||

Database-wide phenomenology and trends

Current quench time, t_{CQ} (ms)

Machine	<i>R</i> ₀ [m]	<i>a</i> ₀ [m]	κ	<i>S</i> [m ²]	ℓ	Meas. τ_{CQ} [ms]	$ au_{CQ}/(\boldsymbol{S}\cdot \ell_i)$	0.35 $ au_{CQ}$ [ms]	1.85 τ _{CQ} [ms]
C-Mod	0.68	0.22	1.60	0.24	1.71	2.49	6.00	0.87	4.61
NSTX	0.85	0.68	2.65	3.85	0.80	4.48	1.45	1.57	8.29
AUG	1.65	0.65	1.80	2.39	1.51	5.33	1.48	1.87	9.86
DIII-D	1.67	0.67	1.80	2.54	1.49	5.24	1.38	1.83	9.69
JET	2.96	1.25	1.80	8.83	1.44	{18}	{1.4}	{6}	{33}