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OVERVIEW

« To predict rotation profile (important for macro- and micro-instabilities)

need to understand torques sources/sinks and momentum transport [Ida
& Rice NF (2014)]

* Here, investigating momentum pinch in low aspect ratio, high beta
spherical tokamak plasmas (NSTX & MAST) as an additional constraint
on theory (stems out of ITPA T&C activity)

e Summary:

Previous NSTX H-mode experiments inferred momentum pinch comparable to
conventional tokamaks, (RV /y)exp ~ (-1) — (-10)

However, local, quasi-linear GK theory predicts negligible pinch (RV /% ,)sim ~ 0 —
(-1) in NSTX H-modes due to electromagnetic and low aspect ratio effects on
mode-symmetry

MAST L-mode experiments (i.e. lower beta) were conducted, analysis not
inconsistent with significant pinch, (RV /x,)exp ~ (-1) — (-9)

However, non-stationary conditions also allow for weaker or outward pinch,
(RV/Xp)exp ~ (-2) = (5)

Local, quasi-linear GK theory predicts weak pinch (RV /y)sim ~ (-1) similar to
NSTX H- modes, too much uncertainty in experiments to constrain predictions
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Toroidal angular momentum transport considered as sum of
diffusion (-x,VQ), convection (V Q) and residual stress (Ilxs)

0
 Transport equation: —(nimi<R2>Q)+V-H(P =T
at / Ignoring residual
stress contributions
throughout this work
) N 7/
« Assumed transport form: H(p =nNmR (— X(pVQ“L V¢Q)+/ngs

« Can identify different physical mechanisms by how they break symmetry
of microinstability [Peeters, NF (2011); Angioni, PFR (2012); Diamond, NF (2013)]

* Pinch expected due to Coriolis effect (Peeters, 2007), or equivalently
turbulent equipartition (Hahm, 2007) + thermoelectric force (Peeters,

2009) 2
O,Z—R vVQ
~ A A RV(P A CS
L, =9, U+ u
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Momentum pinch measured and predicted in conventional

tokamaks
« Measurements in many machines from both perturbative experiments
(NBI, 3D colls) and statistical regression analysis \
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* Increase in (inward) pinch observed with e=r/R and R/L,,, also predicted
by ITG theory (Peeters, PRL 2007; PoP 2009)
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Perturbative NSTX H-mode experiments indicate existence of
an inward momentum pinch, RV /y, = -(1-7)

(Solomon, PRL 2008, PoP 2010;
Kaye, NF 2009; Yoshida, NF 2012)
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Local, linear gyrokinetic simulations of ITG turbulence describe pinch

and scaling in conventional tokamaks = does this hold for STs?
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Higher beta NSTX H-modes often dominated by microtearing
modes (MTM) with sub-dominant ballooning modes

* Most cases have yyry > Vpaiooning (I1,=0 for MTM)

« Sub-dominant modes can be ITG, KBM or compressional ballooning
modes — calculate pinch assuming they contribute to transport
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Guttenfelder, 2016 (Phys. Plasmas, in review)

Linear GYRO simulations
(Candy, Waltz, 2003)

3 species: D,C,e
EM: ¢, A, By
Equilibrium reconstruction

B;=12%, B\=3.5
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Negligible or outward momentum convection predicted from
ES and EM ballooning modes in NSTX

NSTX H-modes (p=0.5-0.7)
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. () Re[¢] (—) Im[¢]
Momentum pinch coupled to symmetry SN R S

breaking in parallel mode structure

« Component of curvature drift in lab frame
(M<1 smaller than curv. drift)

2
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* Does not influence stability, but toroidal flow
couples én, 0T with du — can cause
momentum transport if eigenfunctions
develop parallel asymmetry

« Parallel asymmetry from u>0 very small in
NSTX due to strong particle trapping &
toroidicity — little convective transport

~0.6 L
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A larger (inward) pinch can be found:
(1) at increased aspect ratio, (ii) in purely ES limit at high Vn
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* Above simulations based on NSTX L-mode discharge (Ren, NF 2013)

« Variation in pinch related to changes in parallel mode structure and
symmetry (Guttenfelder, PoP 2016)

« Can’t do aspect ratio scan, can try to do similar analyses at lower beta...
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Shot: — 29890 — 29891 — 29892

MAST L-mode experiment
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« Using applied 3D fields (n=3) to - g
perturb rotation :

— 29890/ 29892 — three n=3 field
pulses applied to brake rotation

— 29891 — no nRMP pulses
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Changes in toroidal rotation due to 3D fields clearly observed

« Non-stationary conditions -- control shot (29891) provides a baseline for
analysis (will impact analysis discussed later)

 Filtering to remove faster sawteeth oscillations(Ats;~6-12 ms)
AQg~2-6 krad/s < AQ,;;~10-20 krad/s
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Effect of sawteeth on rotation weaker
than applied 3D fields

« Sawteeth cause ~6 krad/s (~8%) deceleration
inside inversion radius

* =1 surface y,~0.19-0.26 (R

~114-118 cm)

out

consistent with AT, inversion
— AT, ~ 120 eV (~16% of T, ,~750)
— AT, ~ 50 eV (~6% of T,,~800)
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Method to infer x, and V, from transient rotation response
after RMP turn-off

« TRANSP solves for momentum flux, I1, using the flux-surface-averaged
toroidal angular momentum transport equation (Goldston, Varenna
1985), plus NUBEAM calculations for torgue sources & sinks:

o[ Znmir))e g v l- X7, -3

« Assuming momentum flux composed of only diffusive and convective
contributions:

H:Znim{—<R2(Vp)2>x 2? <R2><Vp>V Q}

we can use I1(p.t), dQ/dp(p,t), and Q(p.t) in a nonlinear least squares fit

algorithm to determine best fit 3 ,(p), V,(p) (assumed constant in time)
— Using time window (0.41-0.45 s) after removal of NTV torque (Ty\7,=0)

* Note: method only valid if dQQ/dp(t) and €(t) are sufficiently decorrelated
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Inward momentum pinch inferred from transient recovery
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« At locations where there is a strong Q- Qb L . —

VQ linear correlation, method is ill-

posed = y, &V, tend to large values

« Can fit entire analysis region
simultaneously using polynomial

profiles

— Best fit (lowest y,?) using quadratic
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Energy confinement and local thermal transport is non-
stationary during analysis window
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Resulting pinch parameter covers broad range, too much

uncertainty to constrain quasi-linear predictions

Prandtl number varies between Pr,,,=0.4-1.1

— Quasilinear Prandtl number from unstable ITG Pr g~
0.5-0.8, in range of experimental inference

Pinch parameter ranges between
(RV /% p)exp=(-1)-(-9) assuming fixed
coefficients, or (RV /1 p)exp=(-1)-(5) for time-
varying coefficients
— Quasilinear pinch parameter is very small,
(qu)/ X(p)lTG~ -1
— Similar to weak pinch predicted in NSTX L and H-
modes
Too much experimental uncertainty to

constrain pinch predictions
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Linear GYRO* simulations used to predict unstable modes
and corresponding momentum pinch

Broad spectrum of microtearing modes
(MTM) predicted p=0.5-0.6 2;
— Even in L-mode, beta relatively high (By=2, p:=4%) s
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- However, no momentum transport predicted °

S
from MTM g ]

« Electrostatic ITG becomes dominant p>0.6

« Can compute quasi-linear Prandtl number
and momentum pinch for ITG mode
(previous slide)

*Linear GYRO simulations
(Candy, Waltz, 2003) using:
3 species: D,C,e

EM: o, A, B,

Equilibrium reconstruction
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Have also begun investigating theoretical residual stress
contributions

* Quasilinear residual stress from strong up-down asymmetry (Camenen, PRL 2009)
predicted to be smaller than diffusive or convective contributions

I/ N contributions
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« Also investigating residual stress sources due to finite p.~1/100 with global GTS

sims, e.g. profile shear ~ o,"-p. (Camenen, NF 2011), intensity shear ~ d(y,rg-ye)/dr-p-

(Gurcan, PoP 2010), zonal flow shear (Wang, FEC2016 TH/P3-12; PoP 2010)
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Summary & future work

* Previous NSTX H-mode experiments inferred momentum pinch
comparable to conventional tokamaks, (RV /y,)exp ~ (-1) — (-10)

 However, local, quasi-linear GK theory predicts negligible pinch
(RV,/%p)sim ~ 0 — (-1) In NSTX H-modes due to electromagnetic and low-
aspect-ratio effects on mode-symmetry

« MAST L-mode experiments (i.e. lower beta) were conducted, analysis
not inconsistent with significant pinch, (RV /y,)exp ~ (-1) — (-9)

* However, non-stationary conditions (y,,,V,~;(t)) also allow for weaker or
outward pinch, (RV /%,)exp ~ (-2) — (5)

* Local, quasi-linear GK theory predicts weak pinch (RV /x,)sim ~ (-1)

similar to NSTX H-modes - too much uncertainty in experiments to
constrain MAST L-mode predictions

« Future NSTX-U L-mode experiments are planned to continue
Investigation of momentum pinch and residual stress contributions
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