

TH/P3-14: Measurement and prediction of momentum transport in spherical tokamaks

W. Guttenfelder¹, A. Field², I. Lupelli², J.-K. Park¹, T. Tala³, J. Candy⁴, S. Ethier¹, S.M. Kaye¹, Y. Ren¹, W.M. Solomon¹, W.X. Wang¹ ¹PPPL, ²CCFE, ³VTT-Finland, ⁴General Atomics

IAEA FEC 2016, Kyoto, Japan

MAST

NSTX

OVERVIEW

- To predict rotation profile (important for macro- and micro-instabilities) need to understand torques sources/sinks and momentum transport [Ida & Rice NF (2014)]
- Here, investigating momentum pinch in low aspect ratio, high beta spherical tokamak plasmas (NSTX & MAST) as an additional constraint on theory (stems out of ITPA T&C activity)

Summary:

- Previous NSTX H-mode experiments inferred momentum pinch comparable to conventional tokamaks, $(RV_{\phi}/\chi_{\phi})_{exp} \sim (-1) (-10)$
- However, local, quasi-linear GK theory predicts negligible pinch $(RV_{\phi}/\chi_{\phi})_{sim} \sim 0 (-1)$ in NSTX H-modes due to electromagnetic and low aspect ratio effects on mode-symmetry
- MAST L-mode experiments (i.e. lower beta) were conducted, analysis not inconsistent with significant pinch, $(RV_{\phi}/\chi_{\phi})_{exp} \sim (-1) (-9)$
- However, non-stationary conditions also allow for weaker or outward pinch, $(RV_{\phi}/\chi_{\phi})_{exp} \sim (-2) (5)$
- Local, quasi-linear GK theory predicts weak pinch $(RV_{\phi}/\chi_{\phi})_{sim} \sim$ (-1) similar to NSTX H-modes, too much uncertainty in experiments to constrain predictions

Toroidal angular momentum transport considered as sum of diffusion (- $\chi_{\phi}\nabla\Omega$), convection (V $_{\phi}\Omega$) and residual stress (Π_{RS})

 $\frac{\partial}{\partial t} \left(n_i m_i \left\langle R^2 \right\rangle \Omega \right) + \nabla \cdot \Pi_{\phi} = T$

• Transport equation:

Ignoring residual stress contributions throughout this work

- Assumed transport form: $\Pi_{\varphi} = nmR^{2} \left(-\chi_{\varphi} \nabla \Omega + V_{\varphi} \Omega \right) + \Pi_{RS}^{throw}$
- Can identify different physical mechanisms by how they break symmetry of microinstability [Peeters, NF (2011); Angioni, PFR (2012); Diamond, NF (2013)]
- Pinch expected due to Coriolis effect (Peeters, 2007), or equivalently turbulent equipartition (Hahm, 2007) + thermoelectric force (Peeters, 2009)

$$\hat{\Pi}_{\phi} = \hat{\chi}_{\phi} \left(\hat{u}' + \frac{RV_{\phi}}{\chi_{\phi}} \hat{u} \right) \qquad \qquad \hat{u} = \frac{-R^2 V \Omega}{c_s}$$
$$\hat{u} = \frac{R\Omega}{c_s}$$

Momentum pinch measured and predicted in conventional tokamaks

 Measurements in many machines from both perturbative experiments (NBI, 3D coils) and statistical regression analysis

• Increase in (inward) pinch observed with ϵ =r/R and R/L_n, also predicted by ITG theory (Peeters, PRL 2007; PoP 2009)

Perturbative NSTX H-mode experiments indicate existence of an inward momentum pinch, $RV_{o}/\chi_{o} \approx$ -(1-7)

 Local, linear gyrokinetic simulations of ITG turbulence describe pinch and scaling in conventional tokamaks ⇒ does this hold for STs?

Higher beta NSTX H-modes often dominated by microtearing modes (MTM) with sub-dominant ballooning modes

- Most cases have $\gamma_{MTM} > \gamma_{ballooning}$ ($\Pi_{\phi}=0$ for MTM)
- Sub-dominant modes can be ITG, KBM or compressional ballooning modes – calculate pinch assuming they contribute to transport

Guttenfelder, 2016 (Phys. Plasmas, in review)

Negligible or outward momentum convection predicted from **ES and EM ballooning modes in NSTX**

- Weak/outward pinch consequence of parallel mode structure response at high beta, low aspect ratio, see:
 - Peeters, PoP (2009)
 - Kluy, PoP (2009)
 - Hein, PoP (2011)
 - Guttenfelder, PoP (2016)

NSTX H-modes (ρ=0.5-0.7)

Momentum pinch coupled to symmetry breaking in parallel mode structure

 Component of curvature drift in lab frame (M<1 smaller than curv. drift)

$$v_{\kappa} \approx \frac{mv_{\parallel}^{2}}{eBR} \rightarrow \frac{2m(v_{\parallel} + u_{0})^{2}}{eBR} = \frac{mv_{\parallel}^{2}}{eBR} + \frac{2mv_{\parallel}u_{0}}{eBR} + \frac{mu_{0}^{2}}{eBR}$$

$$Curvature Coriolis Centrifuga (~M·v_{\kappa}) Coriolis (~M^{2}·v_{\kappa})$$

- Does not influence stability, but toroidal flow couples δn, δT with δu → can cause momentum transport if eigenfunctions develop parallel asymmetry
- Parallel asymmetry from u>0 very small in NSTX due to strong particle trapping & toroidicity → little convective transport —

A larger (inward) pinch can be found: (i) at increased aspect ratio, (ii) in purely ES limit at high ∇n

- Above simulations based on NSTX L-mode discharge (Ren, NF 2013)
- Variation in pinch related to changes in parallel mode structure and symmetry (Guttenfelder, PoP 2016)
- Can't do aspect ratio scan, can try to do similar analyses at lower beta...

MAST L-mode experiment conducted in 2013

- 2 MW LSN L-mode
 - − <n_e>=2.3×10¹⁹ m⁻³
 - − B_T =0.5 T, I_p =0.4 MA (q_{95} ≈5)
 - β_N~2, β_T~4%
- Using applied 3D fields (n=3) to perturb rotation
 - 29890/ 29892 three n=3 field pulses applied to brake rotation
 - 29891 no nRMP pulses
- Weak density pump out w/ nRMP, drop in β_N
- Without nRMP, eventual transition into H-mode (t~0.47 s)

Changes in toroidal rotation due to 3D fields clearly observed

- Non-stationary conditions -- control shot (29891) provides a baseline for analysis (will impact analysis discussed later)
- Filtering to remove faster sawteeth oscillations(Δt_{ST} ~6-12 ms)
 - $\Delta\Omega_{ST}$ ~2-6 krad/s < $\Delta\Omega_{3D}$ ~10-20 krad/s

Effect of sawteeth on rotation weaker than applied 3D fields

- Sawteeth cause ~6 krad/s (~8%) deceleration inside inversion radius
- q=1 surface ψ_N ~0.19-0.26 (R_{out}~114-118 cm) consistent with ΔT_e inversion
 - $\Delta T_{e} \sim 120 \text{ eV}$ (~16% of $T_{e,0}$ ~750)
 - $\Delta T_i \sim 50 \text{ eV} (\sim 6\% \text{ of } T_{i,0} \sim 800)$

WNSTX-U

Method to infer χ_{ϕ} and V_{ϕ} from transient rotation response <u>after</u> RMP turn-off

 TRANSP solves for momentum flux, Π, using the flux-surface-averaged toroidal angular momentum transport equation (Goldston, Varenna 1985), plus NUBEAM calculations for torque sources & sinks:

$$\frac{\partial}{\partial t} \left(\sum_{i} n_{i} m_{i} \langle R^{2} \rangle \Omega \right) + \frac{1}{V'} \frac{\partial}{\partial \rho} \left[V' \cdot \Pi \right] = \sum T_{\text{source}} - \sum T_{\text{sink}}$$

• <u>Assuming</u> momentum flux composed of only diffusive and convective contributions:

$$\Pi = \sum_{i} n_{i} m_{i} \left[- \left\langle R^{2} \left(\nabla \rho \right)^{2} \right\rangle \chi_{\phi} \frac{\partial \Omega}{\partial \rho} + \left\langle R^{2} \right\rangle \left\langle \nabla \rho \right\rangle V_{\phi} \Omega \right]$$

we can use $\Pi(\rho,t)$, $d\Omega/d\rho(\rho,t)$, and $\Omega(\rho,t)$ in a nonlinear least squares fit algorithm to determine best fit $\chi_{\sigma}(\rho)$, $V_{\sigma}(\rho)$ (assumed constant in time)

- Using time window (0.41-0.45 s) after removal of NTV torque (T_{NTV}=0)
- Note: method only valid if $d\Omega/d\rho(t)$ and $\Omega(t)$ are sufficiently decorrelated

Inward momentum pinch inferred from transient recovery

- χ_{ϕ} , V_{ϕ} assumed constant in time
- Using both χ_{ϕ} and V_{ϕ} improves the quality of fit (χ_{ν}^2 smaller than χ_{ϕ} -only fit)
- At locations where there is a strong Ω - $\nabla \Omega$ linear correlation, method is illposed $\Rightarrow \chi_{\phi} \& V_{\phi}$ tend to large values

- Best fit (lowest χ_v^2) using quadratic

Energy confinement and local thermal transport is nonstationary during analysis window

• Inferred pinch becomes smaller or outward assuming χ_{ϕ} , $V_{\phi} \sim \chi_i(t) \sim 1/\tau_E(t)$

Resulting pinch parameter covers broad range, too much uncertainty to constrain quasi-linear predictions

- Prandtl number varies between Pr_{exp}=0.4-1.1
 - Quasilinear Prandtl number from unstable ITG Pr_{ITG}~ 0.5-0.8, in range of experimental inference
- Pinch parameter ranges between (RV_φ/χ_φ)_{exp}=(-1)-(-9) assuming fixed coefficients, or (RV_φ/χ_φ)_{exp}=(-1)-(5) for timevarying coefficients
 - Quasilinear pinch parameter is very small, $(RV_{\phi}/\chi_{\phi})_{ITG}$ ~ -1
 - Similar to weak pinch predicted in NSTX L and Hmodes
- Too much experimental uncertainty to constrain pinch predictions

🛈 NSTX-U

Linear GYRO* simulations used to predict unstable modes and corresponding momentum pinch

- Broad spectrum of microtearing modes (MTM) predicted ρ=0.5-0.6
 - Even in L-mode, beta relatively high ($\beta_N=2$, $\beta_T=4\%$)
- However, no momentum transport predicted from MTM
- Electrostatic ITG becomes dominant ρ>0.6
- Can compute quasi-linear Prandtl number and momentum pinch for ITG mode (previous slide)

*Linear GYRO simulations (Candy, Waltz, 2003) using: 3 species: D,C,e EM: ϕ , A_{||}, B_{||} Equilibrium reconstruction

Have also begun investigating theoretical residual stress contributions

 Quasilinear residual stress from strong up-down asymmetry (Camenen, PRL 2009) predicted to be smaller than diffusive or convective contributions

Also investigating residual stress sources due to finite ρ_{*}~1/100 with global GTS sims, e.g. profile shear ~ ω_r'·ρ_{*} (Camenen, NF 2011), intensity shear ~ d(γ_{ITG}-γ_E)/dr·ρ_{*} (Gurcan, PoP 2010), zonal flow shear (Wang, FEC2016 TH/P3-12; PoP 2010)

Summary & future work

- Previous NSTX H-mode experiments inferred momentum pinch comparable to conventional tokamaks, $(RV_{\phi}/\chi_{\phi})_{exp} \sim (-1) (-10)$
- However, local, quasi-linear GK theory predicts negligible pinch $(RV_{\phi}/\chi_{\phi})_{sim} \sim 0 (-1)$ in NSTX H-modes due to electromagnetic and low-aspect-ratio effects on mode-symmetry
- MAST L-mode experiments (i.e. lower beta) were conducted, analysis not inconsistent with significant pinch, $(RV_{\phi}/\chi_{\phi})_{exp} \sim (-1) (-9)$
- However, non-stationary conditions (χ_φ, V_φ~χ_i(t)) also allow for weaker or outward pinch, (RV_φ/χ_φ)_{exp} ~ (-2) − (5)
- Local, quasi-linear GK theory predicts weak pinch (RV_φ/χ_φ)_{sim} ~ (-1) similar to NSTX H-modes too much uncertainty in experiments to constrain MAST L-mode predictions
- Future NSTX-U L-mode experiments are planned to continue investigation of momentum pinch and residual stress contributions