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Abstract:

The linear peeling-ballooning stability boundary expresses an onset condition for edge local-
ized modes (ELMs), but ELM saturation mechanisms, filament dynamics, and multi-mode
interactions require nonlinear models. In this contribution, characteristic ELM evolution
patterns are identified and measured at Alfvén timescales with a beam emission spectroscopy
(BES) diagnostic on NSTX, and parameter regimes corresponding to the characteristic ELM
evolution patterns are identified. Clustering algorithms from the machine learning domain
were applied to ELM time-series data, and the algorithms identified multiple groups of ELM
events with similar evolution patterns. In addition, the identified ELM groups correspond
to distinct parameter regimes for plasma current, shape, magnetic balance, and density
pedestal profile. The observed evolution patterns and corresponding parameter regimes
motivate nonlinear MHD simulations and suggest genuine variation in the underlying phys-
ical mechanisms that influence the evolution of ELM events. Finally, we present initial ELM
observations from the 2D BES system on NSTX-U.

1 Introduction

The peeling-ballooning linear stability boundary expresses an onset condition for edge
localized modes (ELMs) [1], but ELM saturation mechanisms, filament dynamics, and
multi-mode interactions require nonlinear models [2, 3]. Understanding the nonlinear dy-
namics of ELM-induced heat and particle transport is a critical issue for ITER. Typical
diagnostic tools for ELM observations, like Thomson scattering profiles and Dα filter-
scopes, do not resolve the Alfvén timescales of ELM events. Furthermore, heuristic ELM
classification schemes (Type I, III, etc.) based on extrinsic ELM properties, like secu-
lar edge emission and inter-ELM period, do not capture the nonlinear dynamics and
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FIG. 1: (Color online) An example ELM event: (a) Thomson scattering profiles of elec-
tron density before and after the ELM event; (b) and (d) Dα filterscope signals viewing
inner diverter (red) and full diverter (blue); and (c) and (e) BES measurements of the
ELM event at R = 146 cm. In (b) and (c), vertical lines denote Thomson scattering
measurement times. (f) Examples of diverse evolution dynamics for ELM events.

Alfvén-scale evolution of ELM events. Validation of nonlinear ELM models requires fast
measurements on Alfvén timescales, and identification of common evolution patterns in
ELM events can motivate the formulation or validation of nonlinear ELM models.

Recently, we investigated Alfvén-scale evolution patterns in ELM events captured by
beam emission spectroscopy (BES) measurements on NSTX [4]. Unsupervised machine
learning algorithms identified multiple groups of ELMs with distinct evolution character-
istics. The identified ELM groups exhibited similar stored energy loss, but the groups
occupy distinct regimes for several ELM-relevant parameters. The observed evolution
patterns and associated parameter regimes suggest genuine variation in the underlying
physical mechanisms that influence the evolution of ELM events and motivate nonlinear
MHD simulations. In this contribution, we review the previous results for ELM evolution
patterns and parameter regimes [4], and we present initial 2D BES measurements of an
ELM event from NSTX-U.

2 Cluster Analysis of ELM Time Series Data

We identified 51 ELM events from the NSTX data archive with BES measurements that
capture the Alfvén-scale nonlinear evolution of ELM events [4]. BES measurements of
plasma density are localized with ∆x ≈ 2 cm and sample on Alfvén timescales at 2 MHz
(∆t = 0.5µs, τA ∼ 5µs, and ∆t/τA ∼ 0.1) [5, 6]. Figure 1(a-e) shows an example of ELM
evolution dynamics captured by BES, Thomson scattering, and filterscope measurements.
The ELM database was populated with the following objectives: 1) sample ELMs for a
variety of machine and wall conditions, 2) identify ELMs that are isolated from other
ELMs (ELM periods ! 30 ms) and confounding MHD activity, such as Alfvén avalanches,
and 3) include only ELMs that exhibit a clear pedestal collapse or stored energy loss.
The ELM events show stored energy losses up to 16%. An ELM pedestal collapse may
not be observable if the ELM occurred early in the period between Thomson scattering
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FIG. 2: (a,b) Similar ELMs exhibit a large maximum time-lag cross-correlation, and
(c,d) dissimilar ELMs exhibit a small maximum time-lag cross-correlation.

measurements, and the stored energy loss may be erroneously small if the ELM occurred
early in the period between magnetic reconstructions. Therefore, we require either a clear
pedestal collapse or stored energy loss for ELMs in the database. The constraints likely
exclude small, grassy, or Type V ELMs and Type III ELMs with periods " 20 ms. In
other words, the ELM database is likely populated only by Type I ELMs.

The ELM database spans a large range of plasma current, auxiliary heating power,
plasma shape, and magnetic topology (for details, see Ref. [4]). To capture diverse ELM
phenomena in a variety of machine conditions, the 51 ELM events were drawn from 34 H-
mode discharges spanning four months of experimental operations. Measurements on
Alfvén time-scales inherently capture the nonlinear dynamics and saturation mechanisms
of ELM events, and Figure 1(f) shows examples of diverse evolution dynamics for ELM
events in the database. For instance, some ELM events last less than 100 µs, but oth-
ers persist up to 1 ms. A single perturbation dominates some ELM events, but other
events show multiple perturbations. Finally, some events are oscillatory, but others are
non-oscillatory. Identification of distinct groups of ELM evolution patterns may point to
important nonlinear processes, so our first objective is to identify any structure or pattern
in the ELM evolution database. Visual inspection may be adequate to identify structure
in data, but visual inspection is not scalable to large or high-dimensional datasets. Un-
supervised machine learning algorithms can identify structure, patterns, or organization
in unlabeled data with computational speed and scalability.

We begin with unsupervised hierarchical clustering for the ELM dataset, and later we
explore k-means clustering [7]. Hierarchical clustering links data objects in a multi-level
hierarchy according to the degree of similarity [8]. The hierarchical clustering algorithm
operates on a distance-like metric that quantifies dissimilarity between data objects, and
the time series ELM data requires metrics that quantify dissimilarity between time series
[9]. Time-series similarity metrics such as maximum time-lag cross-correlation, dynamic
time warping, and maximum time-lag cross-correlation of wavelet-transformed signals
were applied in this study. For example, Figure 2 shows ELMs with similar and dissimilar
time-series evolution as determined by a cross-correlation dissimilarity metric. The hier-
archical clustering algorithm operates on dissimilarity metrics, so maximum correlation
values are converted to dissimilarity values with

DTLCC ≡ 1−max(ρ(τ)) (1)

where ρ(τ) is the time-lag cross-correlation function and DTLCC is the associated dissim-
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FIG. 3: (Color online) (a) Dendrogram showing hierarchical clustering in the ELM
database with the time-lag cross-correlation dissimilarity metric and complete linkage, and
(b) the dissimilarity matrix reordered for the ELM sequence in the dendrogram. Clusters
1 (red), 2 (blue), and 3 (green) denote groups of ELMs with similar evolution character-
istics. (c-h) Examples of similar ELMs from the clusters.

ilarity metric.

The hierarchical clustering algorithm iteratively merges the most similar (least dissim-
ilar) data objects into clusters, and the output is a multi-level hierarchy with the most
similar objects linked at low levels. Dendrograms illustrate the multi-level hierarchy of
data objects and clusters, and Figure 3(a) shows the dendrogram for the ELM database
with complete linkage. Groups of data objects linked with low linkage values in the den-
drogram are candidate clusters, and Figure 3(a) shows three candidate clusters labelled
1 (red), 2 (blue), and 3 (green). The designation of clusters in dendrograms is somewhat
subjective, but good candidate clusters should preferably contain many members with
high similarity inside the cluster and low similarity outside the cluster. In the reordered
dissimilarity matrix, candidate clusters are square regions along the diagonal with low
dissimilarity values, and the three candidate clusters are designated with colored squares
in Figure 3(b). Figures 3(c-h) shows examples of ELM evolution for the identified clus-
ters. ELMs in cluster 2 are short duration (∼30 µs), and cluster 1 ELMs are similarly
intense but with longer duration (∼400 µs). Finally, ELMs in cluster 3 show elevated
signals that persist over 1 ms. In summary, the clustering algorithm created a hierarchy
of ELM events grouped by the degree of similarity. The modest results in Figure 3 are
notable because 1) identifying structure, patterns, or association in data is a fundamental
activity in scientific discovery; 2) algorithmic pattern recognition is scalable and readily
automated; and 3) experimental fusion facilities generate large volumes of data. Hierar-
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FIG. 4: K-means cluster results with four clusters for six benchmark ELMs. The clusters
are plotted in principal component (PC) space to aid visualization: (a) clusters plotted in
terms of PC 1 and PC 2, and (b) clusters plotted in terms of PC 1 and PC 3. The colors
denote cluster membership.

chical clustering calculations with different similarity metrics and linkage formulas yield
similar results, as described in Ref. [4].

Like hierarchical clustering, k-means clustering is an unsupervised learning algorithm
that identifies structure, patterns, or association in data, but k-means clustering is divisive
such that the dataset is divided into the specified number of clusters. For ELM time-series
data, we designate a set of benchmark ELMs, and dissimilarity metrics for the benchmark
ELMs serve as absolute coordinates in the k-means algorithm. The number of clusters is
a specified parameter in the k-means algorithm, and the optimum cluster number is found
through trial-and-error. Figure 4 illustrates the optimum four clusters, and the clusters
are plotted in terms of principal components to facilitate visualization of high-dimensional
data. Clusters 1, 2, and 3 in Figure 4 correspond to the same clusters in Figure 3, but
the cyan cluster in Figure 4 has no corresponding low-linkage cluster in Figure 3. For
this reason, we are reluctant to attached “cluster 4” designation to the cyan cluster in
Figure 4.

The k-means clustering results in Figure 4 indicate four clusters are optimal, but the
hierarchical clustering results in Figure 3 point to three clusters of ELMs with similar
evolution. The apparent discrepancy is resolved by mapping k-means results to the hier-
archical results. As discussed in Ref. [4], the clusters from k-means clustering in Figure 4
largely map to clusters previously identified from hierarchical clustering in Figure 3. The
cyan cluster from k-means analysis in Figure 4 maps to a group of ELMs that are largely
unlike all other ELMs from hierarchical analysis in Figure 3. In other words, k-means
clustering captures the three clusters identified in hierarchical results plus a fourth cluster
of ELMs (cyan) that defied grouping in the hierarchical results.

3 Parameter regimes for ELM clusters

Unsupervised clustering techniques identified three clusters of ELMs with similar evolu-
tion patterns in the previous section, and now we search for ELM-relevant parameters
that correlate with the identified ELM clusters. Stored energy loss is a key metric for
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FIG. 5: Stored energy losses for the ELM clusters in (a) kJ and (b) % loss; (c) plasma
current; (d) elongation; (e) magnetic balance (drsep < 0 is lower single null); and (f)
pedestal density height. The small x’s are individual ELMs, the solid bars are mean,
20th, and 80th percentile values. The 20th–80th percentile range captures typical parameter
values.

ELMs [10], but Figure 5(a,b) indicates the identified ELM clusters exhibit similar stored
energy losses. The ELM clusters do not appear to correlate with stored energy loss, but
Figure 5(c-f) shows that the ELM clusters do correlate with several ELM-relevant param-
eters such as plasma current, elongation, magnetic balance, and pedestal density height.
Based on the observed evolution patterns and parameter regimes, we expect the identified
parameters will influence the evolution patterns and nonlinear dynamics in ELM simula-
tions. A more comprehensive discussion of ELM clusters and parameter regimes can be
found in Ref. [4].

If Figure 5(c), cluster 3 with prolonged elevated signals corresponds to higher Ip,
and clusters 1 and 2, with shorter durations, correspond to lower Ip. The clustering
with Ip is reminiscent of the fast and slow post-ELM pedestal temperature gradient re-
coveries observed in DIII-D [11]. In terms of geometry and magnetic balance, cluster
3 occurs preferentially at higher elongation (κ) and in lower single null configurations
(dRsep " −0.5 cm), and clusters 1 and 2 occur preferentially at lower elongation and
double null configurations. The variations in ELM evolution could be due to geometry
or magnetic topology variations, but regardless an accurate nonlinear model of ELM dy-
namics should capture variations in ELM evolution due to any factor including geometry
or topology. Note, however, that the ELM database lacks observations in the upper sin-
gle null configuration. In strongly shaped plasmas, higher density shifts the dominant
peeling-ballooning mode to higher-n ballooning modes [12]. In Figure 5, the dominance
of clusters 1 and 2 at higher pedestal density values could be associated with a shift to
higher-n ballooning modes.
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FIG. 6: (a) Layout of the reconfigured 2D BES system on NSTX-U, (b, c) 2D BES
measurements from NSTX-U of an ELM structure propagating downward, and (d) time-
series evolution from multiple regions in the 2D BES region of coverage.

4 2D ELM imaging on NSTX-U

The BES system on NSTX was expanded and upgraded for NSTX-U. Specifically, the
detection system [5, 6] was expanded from 32 to 48 detection channels, and a further
expansion to 64 detection channels is planned. Also, the sightline layout was reconfigured
for 2D imaging in the pedestal region. Figure 6(a) shows the reconfigured 2D coverage with
54 sightlines spanning the outer plasma and scrape-off-layer regions. BES measurements
from the inaugural operations of NSTX-U captured the 2D, Alfvén-scale evolution of
an ELM event. Figures 6(b,c) shows an ELM structure moving down the field of view,
and Figure 6(d) shows the time-series evolution of the ELM event at four regions. 2D
BES measurements on NSTX-U provides new opportunities to investigate the nonlinear
dynamics of turbulence, ELMs, Alfvén eigenmodes, and other fast instabilities.

5 Summary

We implemented unsupervised machine learning algorithms that identified characteristic
evolution patterns in a database of ELM events. Time-series similarity metrics quantified
the similarity among ELM time-series data, and clustering algorithms identified two and
possibly three clusters of ELMs with similar evolution characteristics. The identified ELM
clusters triggered similar stored energy loss (Figure 5), but the clusters occupied distinct
parameter regimes for ELM-relevant parameters like plasma current, magnetic balance,
triangularity, and pedestal height. The distinct evolution patterns and parameter regimes
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point to genuine variations in the underlying nonlinear dynamics. Based on the observed
evolution patterns and parameter regimes, we expect the identified parameters will in-
fluence the evolution patterns and nonlinear dynamics in ELM simulations. Finally, 2D
BES measurements on NSTX-U provides new opportunities to investigate the nonlinear
dynamics of ELMs and other fast instabilities.
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