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Abstract:

A potentially promising actuator for rotation control in tokamaks is the non-axisymmetric
(3D) magnetic perturbation, as it can substantially alter toroidal rotation by neoclassical
toroidal viscosity (NTV). The optimization of the 3D field distribution for NTV and rota-
tion control is however a highly complicated task, since NTV is mostly non-linear to the
magnitude of the applied field with a complex dependency on the 3D field distribution. Here
we present a new method that entirely redefines the NTV optimizing process, using the new
general perturbed equilibrium code (GPEC). GPEC solves a non-self-adjoint force operator
and force balance with the first-order change in pressure anisotropy by non-axisymmetry,
and integrates its second-order change for NTV under the force balance. This self-consistent
calculation uniquely yields the torque response matrix, enabling the NTV profile optimiza-
tion by a single code run based on the full eigenmode structure of torque matrix. The
code applications to non-axisymmetric control coil (NCC) design in NSTX-U showed the
e�ciency and accuracy of the new method, and in addition the importance of the backward
helicity modes and self-shielding by torque in NTV control. The access to the optimized
field distribution is limited in practice, but it is also straightforward to couple a given set
of coils to torque matrix and optimize the current distributions in the coils.

1 Introduction

An important utility of non-axisymmetric (3D) magnetic perturbation in tokamaks can
be found in the control of toroidal rotation, since 3D magnetic perturbation can generate
non-ambipolar neoclassical process and thus alter ~E⇥ ~B. This process can be understood
by the injection of torque, due to neoclassical toroidal viscosity (NTV) when axisymmetry
is broken. The variability of NTV torque and its profile across radius is in principle as
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large as the shape of 3D magnetic perturbations, which makes NTV potentially promising
for torque control. The optimization of 3D field or coils for NTV, however, is a highly
complicated task due to two main reasons; (1) NTV is a transport non-linear to the
3D field spectrum, and (2) the 3D field spectrum is established with plasma response in
equilibrium. This means that one should couple the models for 3D plasma equilibrium and
transport, and examine the coupled non-linear outcomes to address the variability of NTV
torque by 3D field. The optimization of coils, or assessment of coil capabilities to drive
local NTV, was extensively explored in the course of non-axisymmetric control coil (NCC)
design and physics studies for NSTX-U. An important application of stellarator optimizer
was made during the studies, by coupling IPEC-PENT to STELLOPT, called IPECOPT,
as published in [1]. However, this method still required typically about 102 ⇠ 103 code
runs to find the best 3D field to generate the target NTV profile form assigned, and also
left the issue whether the iteratively estalished solution is merely a local extrenum or
truly a global optimum. This motivated the development of a new method using general
perturbed equilibrium code (GPEC), which entirely redefines the NTV optimizing process
through the self-consistent torque response matrix, which will be described in this report.

This proceeding is organized as follows, after this Introduction. Section 2 will give
the essence of theoretical formulations and results, and show briefly how to derive torque
response matrix. Section 3 will discuss briefly the feature of GPEC solutions as well as
numerical benchmark with MARS-K. The torque response matrix then will be used to
illustrate how to optimize NTV torque profile in free space and also with a given set of
coils in Section 4, and then the proceeding will be concluded with remarks.

2 GPEC formulation and Torque Response Matrix

The force balance equation including anisotropic pressure tensor driven by non-axisymmetric
field is given by

� ~F = �~j ⇥ ~B +~j ⇥ � ~B � ~r�p� ~r ·
⇣
(�pk � �p?)b̂b̂+ �p?

$
I
⌘
� � ~Fg = 0, (1)

with two Maxwell relations �~j = ~r⇥� ~B and � ~B = ~r⇥ (~⇠⇥ ~B). The adiabtic part of per-
turbed pressure arising by Lagrangian formulation is given by �p = �~⇠ · ~rp. The general
perturbed equilibrium code (GPEC) is formulated to include “general” non-axisymmetric
force � ~Fg, which will be omitted here to focus on the self-consistent NTV calculations.
In the first gyro-radius ordering, the perturbed anisotropic pressures �pk =
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Here s stands for species and � ⌘ sign(vk) representing co and counter rotating particles.
The perturbed distribution function is neoclassically determined by drift-kinetic equation,
and can di↵er if approximations or di↵erent collisional models are adopted. In any case,
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one can see that collisions introduce the imaginary term in �W = �(1/2)
R
~⇠ ·� ~F as well as

breaking the self-adjointness. Therefore, the standard variational method for �W cannot
be used, and the force balance equation must be solved directly for each component.

The parallel balance implies just ~r ·
⇣
(�pk � �p?)b̂b̂+ �p?

$
I
⌘
= 0, which then gives

a simple constraint b̂ · ~r�f = 0, that is, the perturbed distribution function must be
constant along the field lines as �f = �f(E, µ, ,↵). This leads to the orbit- averaged
drift kinetic formuation under the action variation. Using the Hastie-Taylor form [2],
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where J ⌘
H
Mvkdl, �0 = d p/d , the guiding center energy U ⌘ E+q�, and the subscript

for J denotes the partial derivatives. Various authors used di↵erent assumptions to solve
this equation. GPEC formulation can include the traditional Kruskal-Obermann [3] or
CGL in the collisionless limit, as well as 1/⌫ or ⌫ regime formulation [4] or combined NTV
formulation [5] for example.

The paralle force balance also eliminates ⇠k, and the two remaining components of
~⇠ can be determined by toroidal (or poloidal) and radial force balance. With Fourier
representation for ⇠ =

P
mn ⇠mnei(m✓�n'), one can derive non-Hermitian Euler-Lagrange

equation
(F⌅0

 +KR⌅ )
0 � (K†

L⌅
0
 + G⌅ ) = 0, (4)

where ⌅ is the matrix vector and its elements are the Fourier modes of radial displacement
~⇠ · ~r , and F, KR, KL, G are non-Hermitian M ⇥M matrices with M number of Fourier
modes containing drift-kinetic e↵ects. More details for the matrices and formulation will
be given in [6]. As shown in [7], it becomes toroidal Glasser equation in the ideal limit
with FI = F†

I , KI = KLI = KRI , GI = G†
I . The equation (4) includes the force by

anisotropic pressure tensor in the first order, and the force by anisotropic pressure tensor
in the second order is precisely what is called NTV torque.

The second order energy and torque can be obtained by integrating
R
~⇠ · � ~F , finally
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due to the force balance by Euler-Lagrange equation. Here WP can be called plasma
response matrix, representing energy and torque driven by ⌅ , and its anti-Hermitian
part of WP gives the torque response matrix. Changing the basis from ⌅ to the external
field on the boundary �, or to the current distributions C in a set of coils, one can
construct

⌧'( ) = �†T( )� = C†TC( )C (7)
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(b) Applications to NSTX-U  

FIG. 1: (a) Comparison of GPEC and MARS-K solutions in both ideal and kinetic zero-
frequency limit, and (b) GPEC applications to NSTX-U illustrating NTV self-shielding
e↵ects.

where T
(C)

= T†
(C)

itself. With T one can calculate the (NTV) torque right away by
calculating “external” (meaning “vacuum”) 3D field on the plasma boundary � and make
the quadratic operation as given. One can further change the basis from the external field
to a vector representing the currents in the coils. If a row of coil can be represented by a
complex number, that is, by its amplitude and toroidal phase for a fixed n, the k number
of rows will constitute a complex vector matrix with a length k. By lineary mapping C
to �, one can also construct a “coil-constrained” torque response matrix as shown in the
equation. C can only create a subset of �, and TC with a reduced dimension to k ⇥ k
represents torque density profile that can be generated by a given set of coils.

3 Numerical Implementation and Benchmark

This section will briefly discuss the code implementation and benchmark. GPEC inte-
grates the new Euler-Lagrange equation using LSODE package and thus on the adaptive
radial grid, and couples the solutions to the external field and coils based on virtual casing
method. This is similar to DCON and IPEC, but non-Hermitian Euler-Lagrange equation
does not have any singularity as det|F| 6= 0 in general, due to the anti-Hermitian part of
the matrix.

The solution structure by GPEC should be in principle identical to the one by MARS-
K code in zero-frequency limit, and if the same kinetic model is adopted. Numerical
benchmark between these two self-consistent kinetic calculations was shown in Fig. 1 (a),
on a circulr cross-section plasma but with low aspect ratio A = 2.8 and high �N = 3.3 to
magnify mode coupling e↵ects as well as kinetic e↵ects. In addition to the good agreement
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made, one can see that there are new structure arising in imaginary part by both codes.
In this example, the applied field is real (cosine) and plasma response is expected to be
real if the force operator is Hermitian. This is why a circular plasma is selected. The
coupling to imaginary (sine) is the consequence of torque, represented by this toroidal
phase-shift in plasma response.

Another aspect one can see from Fig. 1 (a) is that the singular nature in the ideal
solutions (left) across rational surfaces is disappeared in kinetic solutions. The singular
behavior in the ideal solutions is integrable for ideal energy �WI , but not for kinetic
energy and torque. This is because transport depends on �BL = �B + ~⇠ · ~rB, inherently
on a Lagrangian frame, and the tangential displacement ⇠↵ / ⇠ /( � R) when  !  R

gives non-integrable singularity in �BL. Therefore in the perturbative kinetic or NTV
calculations, this singularity from plasma response should be regularized as reported in
various literature [8-9].

The inclusion of torque in equilibrium can alter response and NTV calculations not
only in the neighborhood of resonant surfaces, but also globally in a significant amount.
Fig. 1(b) shows that perturbative vs. self-consistent NTV calculations for a high-�
(�N = 3.4) IP = 2.0MA NSTX-U plasma . The model equilibrium and kinetic profiles
were simulated with TRANSP with 12MW NBI, but then !E is scaled from the given
!E0

to predict NTV dependency on rotation. In this particular example, the predicted
NTV torque increases unrealistically more than 10Nm along with !E, but such a large
torque creates currents and toroidal phase-shift that can shield external perturbation and
eventually decrease NTV. This so-called self-shielding process was predicted by Boozer
[10], and here demonstrated by numerical calculations for the first time.

4 Systematic optimization of NTV torque

The torque matrix functions derived in Sec. 2 can immediately answer some fundamental
questions in NTV optimization; Let �[A] be eigenvalues of the matrix A.

• Maximum (minimum) NTV torque achievable inside a given  , and how to create
such a torque ideally or with a given set of coils?:
! �

max(min)

[T( )] without constraints and �
max(min)

[TC( )] when coil-constrained,
with each proper normalization, e. g. |�| = 1G or |C| = 1kA. Each eigenvector
gives the field required on the boundary or coil amplitude/phase needed.

• Maximum (minimum) fraction of NTV torque achievable inside a given  , and how
to achieve it ideally or with a given set of coils?:
! �

max(min)

⇥
T( )T�1( b)

⇤
without constraints and �

max(min)

⇥
TC( )T

�1

C ( b)
⇤
when

coil-constrained, where  b = 1 at the boundary. Each eigenvector gives the field
required on the boundary or coil amplitude/phase needed.

• Optimized NTV torque profile maximizing torque inside ( 
1

, 
2

) while minimizing
torque elsewhere when the total torque is fixed, and how to create such a torque
ideally or with a given set of coils?:
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Target profile form 
Using 

IPECOPT 
(100-1000 runs) 

GPEC optimum 
(A single run) 

(a) Theoretical Maximum NTV fraction 

(b) External field required (for 100% rotation) 

(c) Torque density profile optimized for ψ<0.5 

Ψ<0.5 

Ψ<0.9 

FIG. 2: (a) Maximum NTV torque fraction achievable ideally inside a given  for an
NSTX-U model, (b) required field spectrum on the boundary to achieve them, and (c)
resulting torque profile (for  < 0.5) and comparison with IPECOPT solution.

! �
max(min)

⇥
(T( 

2

)� T( 
2

))T�1( b)
⇤
and �

max(min)

⇥
(TC( 2

)� TC( 2

))T�1

C ( b)
⇤

with and without constraints by coils, respectively. Each eigenvector gives the field
required on the boundary or coil amplitude/phase needed.

Here one ansatz required to use T�1 is the positive definitness in T. If T is not a
positive definite matrix, the second and third questions are ill-posed. The maximum
torque fraction achievable at a given radius is shown in Fig. 2 (a) for an example, using
NSTX-U target used for Fig. 1 (b). This is theoretical for the given target and kinetic
profiles if any external field can be generated. It is surprising to see that one can dump
90% torque inside  < 0.5 depending on the kinetic profiles. Fig. 2(b) shows external
field required to maximize NTV torque fraction for  < 0.5 and  < 0.9, indicating the
importance of negative helicity (or minus m) modes to maximize torque in the core. This
example of NTV optimization for core (here  < 0.5) was in fact extensively studied with
IPECOPT method previously, which couples the perturbative NTV calculations by IPEC
and PENT to STELLOPT. The iteratively obtained profile, as shown in Fig. 2(c), was
one of major accomplishments in IPECOPT applications but GPEC can answer the same
question immedicately by eigenvalue and eigenvector analysis. Besides, the optimized
profile, shown also in Fig 2. (c), meets the requirements much better, indeed minimizing
the NTV torque density outside  = 0.5. At this point it is not clear if this di↵erence is
due to self-consistent NTV vs. perturbative NTV, or global optimum by GPEC vs. local
optimum by IPECOPT.
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(a) (b) 

FIG. 3: (a) Coil currents and (b) phase-shifts required for each row for a KSTAR target
(discharge #13264) to maximize NTV torque inside a given  .

Theoretical optimization illustrated above can be used to understand fundamental field
coupling to NTV, and can suggest how one should shape the external field and design
the coils accordingly. When a set of coils is given, however, one would want to answer
the same questions with only field spectrum accessible by coils. This coil-constrained
optimization is under investigations for new non-axisymmetric control coil (NCC) design
for NSTX-U, and with I+C-coil in DIII-D, and also with IVCC coil system in KSTAR,
and eventually can be used to optimize NTV with ITER RMP or EFC coils. Here for
example, KSTAR has 3 rows of coils with 4 toroidal arrays, and thus n = 1 field can
have arbitrary amplitude (up to 5kA, which is the value supported by present power
supplies) and toroidal phase from each row. This constitutes 3 ⇥ 1 complex vector C,
representing amplitude and phase for each row in each element, and 3⇥3 coil-constrained
torque response matrix TC for KSTAR. The optimization of the coil current amplitudes
and phases to maximize NTV torque inside a given  is shown in Fig. 3. (a) shows
currents required with a normalization I2TOP + I2MID + I2BOT = 1, and (b) shows how to
shift toroidal phase among coils. One toroidal phase is just a reference toroidal phase that
does not change NTV unless intrinsic error field is significant. If only total NTV torque
is concerned, one can easily see from the rightmost point that IMID ⇠ 2ITOP ⇠ 2IBOT

and phase-shift (phasing) 160o ⇠ 170o can maximize total NTV torque. The eigenvalue
indicates then that maximum total torque possible in this KSTAR target (#13264 from
experiments) is ⇠ 2Nm if rms current for coils allowed is up to 5kA.

5 Concluding Remarks

The newly developed GPEC directly solves a non-self-adjoint force including kinetic
anisotropic pressure tensor, to the first order of non-axisymmetric perturbation, and gives
the second-order energy and torque. The solutions are self-consistent across equilibrium
and neoclassical transport, giving more precise NTV calculations without adhoc assump-
tion across resonant surfaces. One of unique features in GPEC is the torque response



TH/P1-6 8

matrix, which contains all the information of NTV torque that can be generated in free
space or with a given set of coils, and thus NTV optimization can be greatly simplified by
its eigenvalues and eigenvectors. Much more complicated questions, such a maximizing
torque in ( 

1

, 
2

) but minimizing torque ( 
3

, 
4

) when the total torque is fixed, and/or
when |�| or |C| is fixed, can also be easily studied and answered using quadratic matrix
optimizers rather than dealing with full non-linearly coupled plasma response and trans-
port calculations. This work was supported by DOE Contract No. DE-AC02-09CH11466.
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