

Progress in Spherical Torus Research

Roger Raman University of Washington, Seattle and the NSTX National Research Team

> ICC Workshop 28-30 May 2003, Seattle, WA

Raman, ST_ICC2003

Acknowledgments

M. Bell, D. Gates, L. Grisham, S.M. Kaye, H.W. Kugel, R. Majeski, M. Redi, E. Synakowski (PPPL) T.R. Jarboe, B.A. Nelson (Univ. of Washington) R. Maingi, M. Peng (ORNL)

For presentation material

M.Gryaznevich, A. Sykes (MAST, UK) R. Fonck, G.D. Garstka (Pegasus) Y. Takase (TST-2, Japan) G.O. Ludwig (ETE, Brazil)

STs expand parameter space in Aspect ratio

- Strong toroidicity
 Good stability
- High edge q

 High Bootstrap current fraction

High performance steady-state capability in smaller machines

- Most of the current driven by the plasma
- Small auxiliary current drive needed
- Low values of B_T
 - leads to cheaper machines
 - enables easier demonstration of scientific understanding that allows for extrapolation with confidence

ST Program connects with good confinement tokamak database and with spheromaks

- Medium sized machines

 NSTX and MAST (1MA, R/a ~ 0.85/0.65)
- Concept exploration machines
 - Pegasus: Very Low Aspect ratio machine, RF current drive for sustainment
 - HIT-II: CHI for startup and sustainment
 - CDX-U: Li-Wall development
 - Other STs also contribute to these studies (TST-2, ETE, Globus-M, HIST)

ST Program is an international effort

Medium sized STs study the following physics

- High β and global confinement
- High Bootstrap current fraction
- Solenoid free plasma startup
 - Coaxial Helicity Injection (CHI)
- Non-inductive current sustainment
 - High Harmonic Fast Wave (HHFW)
- Long pulse, high performance
 - Acceptable heat loads
- Other studies in progress
 - Fast particle physics
 - Transport and Turbulence
 - H mode physics

Strong linkages between STs and Tokamaks

MAST and

ASDEX-Upgrade

in Europe

Red shows design values

	MAST	NSTX	
R (m)	0.85	0.86	
a (m)	0.65	0.68	
k	2.4 (3)	2.5	
I _p (MA)	1.2 (2)	1.5 (<mark>1</mark>)	
$B_{T}(T)$	0.5	0.45	
P _{AUX} (MW)	3 NBI (5)	5 NBI (5)	
	1 EC (1.5)	4 FW (6)	
T _{pulse} (s)	< 0.65 (5)	0.55 (5)	

- Similarity experiments proposed on MAST/ASDEX-U and NSTX/DIII-D
- NSTX/MAST similarity experiments started

NSTX and DIII-D in USA

Raman, ST_ICC2003

MAST and NSTX

NSTX has shown high β capability at 1 MA

- $\beta_T = 35\%$ determined by magnetic analysis
- $B_T = 0.3T$, A = 1.4, $\kappa = 2.0$, $\delta = 0.8$
- $\beta_T \sim 30\%$ obtained on MAST

Raman, ST_ICC2003

Gates & NSTX Team

9

Substantial bootstrap current fraction achieved in NSTX

• Goal is to control profiles of both pressure & current to maximize stability and bootstrap current contribution

Raman, ST_ICC2003

Menard & NSTX Team

10

0.1MA of HHFW current drive inferred by circuit analysis

- HHFW are compressional fast Alfvén waves,
 ω ~ k_⊥V_A ~ (6-12) Ω_D
- For NSTX β ~ 4% 38%, choose ω/ k₁₁ ~ V_{te}

- 2 discharges with similar $n_e(r)$, $T_e(r)$
- ΔV not caused by dl_i/dt

Raman, ST_ICC2003

MAST & NSTX show good confinement ($\tau_E > 100$ ms)

 $au_{E}^{98y,2}$ (msec)

- Little difference in scaling for L and H modes
- In general agreement with IPB98y2 scaling
- Extends the range of R/a in scaling database
- MAST has obtained H-modes in an ohmic plasma

Raman, ST_ICC2003

MAST & NSTX Teams ¹²

Natural divertor plasmas may offer an alternate configuration for high performance discharges

- Formation of the Natural Divertor at low R/a:
- As aspect ratio A decreases, exhaust plume expands

- Inboard limited plasmas have an expanded outer SOL
- Reduced, evenly spread contact on the centre limiter.
- Exhibited H-mode features with ELM-free periods

Raman, ST_ICC2003

MAST Team

CHI has generated substantial toroidal current in NSTX

 Goal is to control discharge evolution to promote relaxation of toroidal current into closed flux surfaces

Raman, ST_ICC2003

NSTX: Univ. of Washington, PPPL

14

Other results from medium sized STs

- MAST uses a mergingcompression method (outer PF coils) to generate solenoid-free startup current
- Power handling studies on MAST and NSTX indicate most of the heat deposition on outboard divertor legs
- Conventional aspect ratio tokamak empirical scaling of $\beta_N \le 4l_i$ limit(generally ~2.5 l_i) not seen in STs.

Results from the concept exploration STs

	Pegasus	HIT-II	CDX-U	TST-2
R/a (m)	0.45/ 0.4	0.3/ 0.2	0.34/ 0.24	0.36/ 0.23
В _т (Т)	0.15	0.5	0.2	0.4
I _p (kA) <i>(Achieved)</i>	160	265	70	90

Pegasus explores extremely low-aspect ratio physics in high- β plasmas

- β_t up to 20% and I_N up to 6.5 achieved *ohmically* at A of ~1.2
- Minimize central column
- Maintain good stability and confinement

Pegasus: U Wisconsin 17

Raman, ST_ICC2003

Toroidal field utilization exhibits a "soft limit" around unity

 I_P/I_{tf} is a figure of merit for access to low-A physics

- Maximum I_p ~ I_{tf} in almost all cases
- Limit is not disruptive, I_P saturates or rolls over
- Large resistive MHD instabilities degrade plasma as TF decreases
- Reduced available voltseconds as TF is reduced
- Upgrades now in progress will allow access to larger I_p/I_{TF}

Pegasus: U Wisconsin 18

Raman, ST_ICC2003

CDX-U studies role of Lithium PFCs on plasma operations and practical implementation issues

• Recycling & Fueling

- Impurity reduction
- Performance enhancement
- Radiation lossses, core Li accumulation
- Safety issues
- Motion of liquid during PF ramps, disruptions

Heat/Li shield

Tray temp. monitored

TiC coated shield on CS

- Tray has a radius of 34cm, width of 10cm, depth of 6mm, Temp. ~ 300C
- Electrical break between two halves, Liquid Li injected into both halves

Raman, ST_ICC2003

CDX-U: PPPL

A new lithium tray has been installed and filled. Global recycling greatly reduced by clean lithium

Improved filling technique developed by UCSD -PISCES group Note reflections in metallic lithium

Oxygen, carbon impurities virtually eliminated

Immediate 30% increase in peak plasma current, discharge duration

Loop voltage to sustain current dropped from $2.0 \Rightarrow 0.5V$

20

CDX-U: PPPL & UCSD

New method for CHI startup on HIT-II improves performance of inductive discharges

- New method *"Transient CHI startup"* developed
- Record plasma currents of 265kA obtained using CHI startup
- CHI transition current reduces at higher density
 - Indicates need for improved pre-ionization
- Method is applicable to a pre-charged transformer

Raman, ST_ICC2003

Non-inductive current initiation by ECH in TST-2

- ECH (2.45 GHz)_
 → 1 kA / 1 kW
- Low gas pressures → low collisionality
- Vertical field with positive curvature
 → trapped
 electrons

Other results

- During IRE, Impurity temperature increases from
 - ~ 100 to 500 eV

TST-2: Univ of Tokyo

Summary

- Remarkable progress in ST physics and technology in just a few years
- MA machines validate important predicted physics
 - $\beta_T \sim 35\%$ achieved on NSTX
 - Good τ_{E} > 100 ms achieved by NSTX and MAST
 - Good progress with divertor power loading studies
 - Non inductive current drive observed
- Good progress with current initiation studies on HIT-II and TST-2
- Liquid Li experiments on CDX-U showing immediate plasma performance improvement
- Pegasus is upgrading to allow access to larger Ip/I_{TF}