

Supported by

Tools For Developing Advanced Spherical Tokamak Plasmas in NSTX

Stefan Gerhardt, PPPL

M. Bell, R. Bell, D. Gates, R. Kaita, E. Kolemen, H. Kugel, B. LeBlanc, J. Menard, D. Mueller, *PPPL* R. Maingi, J. M. Canik, *ORNL* S. A. Sabbagh, *Columbia University* H. Yuh, Nova Photonics and the NSTX Research Team

> Innovative Confinement Concepts 2010 LSB Auditorium, PPPL Feb. 19th, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

Scenario Development Research in NSTX Focused on Needs of Next-Step Devices

- Next-step STs designed to provide important engineering and physics knowledge for fusion energy:
 - -ST Fusion Nuclear Science Facility
 - Develop fusion nuclear science.
 - Test nuclear components for Demo
 - Sustain W_{neutron} ~ 0.2-0.4 \rightarrow 1-2MW/m², $\tau_{pulse} = 10^3 \rightarrow 10^6 s$
 - -ST Plasma Material Interface Facility
 - Develop long-pulse PMI solutions for FNSF / Demo.
 - High $P_{heat}/S \sim 1$ MW/m², high T_{wall} , $\tau_{pulse} \sim 10^3$ s
- NSTX scenario develop research
 Maximize the non-inductive current fraction.
 - Study the stability, transport, and overall performance, of plasmas with largely non-inductive current drive.
 - Develop an understanding of the control tools needed to achieve these configurations.

NSTX Designed to Study High-Temperature Toroidal Plasmas at Low Aspect-Ratio

Aspect ratio A	1.27 – 1.6	
Elongation k	1.8 – 3.0	
Triangularity δ	0.2 - 0.8	
Toroidal Field B _{T0}	0.4 – 0.55 T	
Plasma Current I _p	1.5MA	
Auxiliary heating:		
NBI (100kV)	7 MW	
RF (30MHz)	6 MW	
Central temperature	1 – 5 keV	
Central density	≤1.2×10 ²⁰ m ⁻³	

Outline

- Next-step STs and NSTX.
- Example of optimized discharges in NSTX.
- Important operational and analysis tools.
- Means to increase the non-inductive fraction:
 - Near-term: Liquid Lithium Divertor
 - Long-term: NSTX-Upgrade

Best NSTX Discharges Achieve CTF-level β_N , with Good Confinement and High Non-Inductive Fraction

Shaping is Described by the "Shape Parameter" S

Strong Plasma Shaping is Important For Sustained High-β

n=1 Mode Control Provided with Internal Sensors and External Midplane Coils

6 ex-vessel midplane control coils

- Copper stabilizing plates to enable high-β operation.
- 6 ex-vessel midplane coils.
- 48 Internal sensors for nonaxisymmetric fields.
 - 24 B_R for perturbations.
 - 24 B_P for perturbations.
- Use internal sensors to reconstruct an n=1 amplitude (B₁) and phase (θ_1) at each time.

 $B_{RWM}(\phi) = B_1 \cos(\phi - \theta_1)$

- Apply a phase shifted n=1 field.
 - Feedback Gain G
 - Feedback Phase δ

$$B_{F.B.}(\phi) = GB_1 \cos(\phi - \theta_1 - \delta)$$

Resistive Wall Mode (RWM) Feedback: Rapidly varying applied field. Dynamic Error Field Correction (DEFC): Slowly varying applied field.

n=1 Mode Control Enables Reliable Access to Higher β

ICC – NSTX Advanced Spherical Tokamak (Gerhardt) S.P. Gerhardt, J. Menard, S. A. Sabbagh Feb. 19th, 2010 9

Lithium Conditioning Provided by Dual Lithium Evaporators

- Two evaporators, separated by ~150° toroidal, deposit solid lithium on graphite PFCs
 - LITER=LIThium EvaporatoR
- Typically deposit 50-300 mg of lithium between discharges.
 - In-situ QMB data implies deposited lithium thickness is 5 160 nm on inner divertor plate.
- Need 40-60% more gas with Li conditioning to match density evolution.
- Eliminated the need for both helium GDC between discharges and bi-weekly boronization.
 - Also increases shot-to-shot reproducibility and reliability.

NSTX

[1] H. Kugel Phys. Plasmas **15**, 056118 (2008) [2] M. Bell et al, Plasma Phys Control Fusion **51**, 124054 (2009)

Lithium Coating Reduces Deuterium Recycling, Suppresses ELMs, Improves Confinement

Feb. 19th, 2010 11

Confinement Improves, and Temperature Profiles Broaden, With Li Conditioning of the PFCs

- TRANSP analysis confirms electron thermal transport in outer region progressively reduced by lithium.²
- Root cause of confinement improvement with lithium is not understood.
 - lons remain approximately neoclassical.
 - Electron transport in NB-heated H-mode ST plasmas is not understood.

[1] M. Bell et al, Plasma Phys Control Fusion 51, 124054 (2009), [2] S. Ding, Plasma Phys. Control Fusion 52, 015001 (2010)

Impurity Accumulation in ELM-Free H-Mode Can Be Arrested With Triggered ELMs.

- ELMs are eliminated with lithium conditioning.
 - Modifications to the edge profiles results in modifications to the peeling-ballooning stability boundary.²
- Core radiation grows to unacceptable levels.¹
- Magnitude of apparent metals concentration depends on plasma current
 - Consistent with sputtering from lost fast-ions being an important impurity source.
 - Bedget de la compara de la com

- Use 3-D field (n=3) pulses to reintroduce ELMs and reduce radiated power.
 - Short duration (~3 msec)
 - Large amplitude (~2.5kA)
 - Reliable ELM triggering from 10-70 Hz

Double-null, κ=2.4, δ=0.8, 0.8MA, 0.45T, NBI 4 MW

[1] M. Bell et al, Plasma Phys Control Fusion 51, 124054 (2009), [2] R. Maingi, et al, Phys. Rev. Lett. 103, 075001 (2009), [3] J.M. Canik Phys. Rev. Lett 104, 045001 (2010)

Current Profile Analysis Shows That Present Configurations Are Limited to f_{NI}<70%

- Separate calculations of each current profile constituent in NSTX
 - Inductive Currents: Electric field from time derivates of equilibria, and neoclassical resistivity¹

$$\langle J_{OH} \cdot B \rangle = \sigma_{Neo} \langle E \cdot B \rangle$$

• Bootstrap Currents: Calculate using either the NCLASS model in TRANSP, or the Sauter model.¹

$$\left\langle J_{BS} \cdot B \right\rangle = \left(RB_{\phi} \right) p_{e} \left[L_{31} \frac{1}{p_{e}} \left(\frac{\partial p_{e}}{\partial \psi} + \frac{\partial p_{i}}{\partial \psi} \right) + L_{32} \frac{1}{T_{e}} \frac{\partial T_{e}}{\partial \psi} + L_{34} \alpha \frac{1 - R_{pe}}{R_{pe}} \frac{1}{T_{i}} \frac{\partial T_{i}}{\partial \psi} \right]$$

Neutral Beam Currents: Calculate using the NUBEAM module in TRANSP.

$$J_{NB} = J_F \left[1 - \frac{Z_F}{Z_{eff}} (1 - G) \right] \quad J_F \text{ is the current density of circulating ions}$$

Process repeated for ~80 high- β discharges over a range of parameters.

Liquid Lithium Divertor Plates Have Been Installed in NSTX For Improved Pumping of Hydrogenic Species

[1] H. Kugel et al., Fusion Engineering and Design 84, 1125 (2009)

Back side of plate with heaters and thermocouples installed

LLD to be filled with lithium from the dual LITER evaporator system

Micrograph of porous Mo layer

H. Kugel, R. Nygren (SNL), S. O'Dell (PPI), E. Starkman

25-30% Density Reduction Projected at High-δ

NSTX ICC – NSTX Advanced Spherical Tokamak (Gerhardt)

- Fix plasma boundary and profile shapes from high- β_P discharge 133964.
- Modify the TRANSP input data to predict fully evolved current profiles.

Experimental Reference

Z_{eff}=3 Exp. Density Exp.Temperature f_{BS}=45%, f_{NBCD}=17%

NSTX ICC – NSTX Advanced Spherical Tokamak (Gerhardt)

NSTX Upgrade Would Be A Major Step Along ST Development Path (next factor of 2 increase in current, field, and power density)

	NSTX	NSTX Upgrade	Plasma-Material Interface Facility	Fusion Nuclear Science Facility
Aspect Ratio = R_0 / a	≥ 1.3	≥ 1.5	≥ 1.7	≥ 1.5
Plasma Current (MA)	1	2	3.5	10
Toroidal Field (T)	0.5	1	2	2.5
P/R, P/S (MW/m,m ²)	10, 0.2*	20, 0.4*	40, 0.7	40-60, 0.8-1.2

* Includes 4MW of high-harmonic fast-wave (HHFW) heating power

Higher Field B_T=1T from new CS + 2nd NBI Would Enable **Access to Wide Range of 100% Non-Inductive Scenarios**

Summary

- NSTX discharges have achieved CTF levels of bootstrap current and β_N .
 - Up to 70% of the current has been driven non-inductively in long-pulse quiescent discharges.
- A large number of analysis and operational tools facilitate this:
 - Plasma shaping
 - n=1 mode control
 - Lithium conditioning
 - Current profile analysis
 - Many others...
- Near and long- term upgrades will enhance integrated ST research.
 - Enhanced pumping with LLD.
 - Higher field & current + off-axis beam current drive in the upgraded NSTX.

H-Mode Access Provides Improved Stability and Broad Current Profile

Broader T_e Profile with Lithium Coating Reduces Both Inductive and Resistive Flux Consumption

- Critical issue for development of low-aspect ratio tokamaks
 - Little space for conventional central solenoid providing inductive current drive

 Reduction occurs despite increase in <Z_{eff}> in ELM-free H-modes after lithium coating

Analysis of Carbon Tile Surfaces Confirms Migration of Lithium Under Plasma Fluxes

- Analysis performed on surface of carbon tiles as removed from vessel
- Used ion-beam nuclear-reaction analysis for lithium and deuterium areal density in surface layer
 Scan across lower divertor
 E
 Center column

- Peak lithium density remaining on inner divertor ~0.6 mg·cm⁻²
- Total deposition there estimated at ~8 mg·cm⁻²

Metals Responsible for Most of the Increase in Radiation When ELMs Suppressed by Lithium

- Radiated power centrally peaked in ELM-free discharges
- VUV and SXR spectra show iron lines (Fe X – XVIII) increasing during ELM-free periods
- Radiated power profile remains hollow when ELMs are present
 - Metals still present early but do not accumulate
 - If increase in radiation is ascribed to iron-like metals:
 - $n_{"Fe"}/n_e \sim 0.1\%$
 - ΔZ_{eff} ("Fe") ~ 0.3
- Dependence of rate of rise of radiation on I_p suggests sputtering by unconfined NB ions is source

Lithium Concentration in Plasmas Remains Low but Carbon Concentration Rises with Lithium Coating

Lithium Affects ELMs Through Changes in Temperature and Pressure Profile at Edge

• Multiple timeslices mapped into composite profiles using EFIT equilibrium

Shift of Maximum in ∇p_e to Region of Lower Shear with Lithium Stabilizes Kink/Ballooning

- Analysis with PEST and ELITE codes
- Change in recycling affects edge current
- Precursor activity with n = 1 5 observed before ELM onset

Lithium Reduces Deuterium Recycling but Need to Increase Fueling to Avoid Early Locked Modes

- Lower density achievable early in discharges both with and without lithium but likelihood of deleterious locked modes increases
 - Extensive HeGDC, He ohmic- or HHFW-heated plasmas also effective

• Tangentially viewing camera for edge D_{α} emission shows greatly reduced neutral D density across outboard midplane with lithium

NSTX Mission Elements

- Understand unique physics properties of ST
 - Assess impact of low A, high β , high v_{fast} / v_A on toroidal plasma science + impact of high power density on PMI
 - Longer term NSTX \rightarrow NSTX Upgrade goals:
 - Study high beta plasmas at reduced collisionality
 - Access full non-inductive start-up, ramp-up, sustainment
 - Prototype solutions for mitigating high heat & particle flux
- Extend tokamak physics understanding, support ITER
 - Exploit unique and complementary ST features
 - Benefit from tokamak research and development
- Establish attractive ST operating conditions
 - Understand and utilize ST for addressing key gaps between ITER and FNSF / DEMO
 - ReNeW Thrusts 14-15 (FNS), 9-12 (PMI), 8 (self-driven high-Q_{DT})
 - Advance ST as fusion power source

ST-based Plasma ST Material Interface (PMI) No Science Facility (

ST-based Fusion Nuclear Science (FNS) Facility

Feb. 19th, 2010 32

NSTX Upgrade will contribute strongly to toroidal plasma science and preparation for a fusion nuclear science (FNS) program

•NSTX:

- Providing foundation for understanding ST physics, performance

•NSTX Upgrade:

- Study high beta plasmas at reduced collisionality
 - Vital for understanding confinement, stability, start-up, sustainment
- -Assess full non-inductive current drive operation
 - Needed for steady-state operating scenarios in ITER and FNS facility
- Prototype solutions for mitigating high heat, particle exhaust
 - Can access world-leading combination of P/R and P/S
 - Needed for testing integration of high-performance fusion core and edge

•NSTX Upgrade contributes strongly to possible next-step STs:

- -ST Fusion Nuclear Science Facility
 - Develop fusion nuclear science, test nuclear components for Demo
 - Sustain W_{neutron} ~ 0.2-0.4 \rightarrow 1-2MW/m², τ_{pulse} = 10³ \rightarrow 10⁶s
- -ST Plasma Material Interface Facility
 - Develop long-pulse PMI solutions for FNSF / Demo (low-A and high-A)
 - Further advance start-up, confinement, sustainment for ST
 - High P_{heat}/S ~1MW/m², high T_{wall}, τ_{pulse} ~ 10³s

Upgrade 2nd NBI injecting at larger R_{tangency} will greatly expand performance and understanding of ST plasmas

- Higher CD efficiency from large R_{TAN}
- Higher NBI current drive from higher P_{NBI}
- Higher β_P , f_{BS} at present $H_{98y2} \le 1.2$ from higher P_{HEAT}
- Large $R_{TAN} \rightarrow$ off-axis CD for maintaining $q_{min} > 1$
- Achieve 100% non-inductive fraction (presently < 70%)
- Optimized $q(\rho)$ for integrated high τ_{E} , β , and f_{NI}
- Expanded research flexibility by varying:
 - *q*-shear for transport, MHD, fast-ion physics
 - Heating, torque, and rotation profiles
 - $-\beta$, including higher β at higher I_P and B_T
 - Fast-ion $f(v_{\parallel}, v_{\perp})$ and *AE instabilities
 - 2nd NBI more tangential like next-step STs
 - Peak divertor heat flux, SOL width

NSTX

• q(r) profile variation and control very important for global stability, electron transport, Alfvénic instability behavior

