

Discussion of NSTX Contributions to ITER-ITPA:

Macroscopic Stability

Colorado Sch Mines Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL **PPPL** PSI Princeton U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

College W&M

S.A. Sabbagh, S.P. Gerhardt, J. Breslau Macroscopic Stability Topical Science Group

NSTX ITER/ITPA Discussion Meeting September 29th, 2008

PPPL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

NSTX Macro TSG Met to Address Contributions to ITER/ITPA

Actions for Meeting (9/24/08)

- Discuss topics experimental / theoretical / modeling perspectives
- Suggest priority given resources
- Identify personnel as responsible NSTX contacts

Address Program Director's Questions

- "Which ITER and ITPA high priority areas should NSTX focus on?"
- "Which joint experiments should NSTX contribute to or lead?"
- "Should any new joint experiments be initiated?"
- "Are there joint experiments that should be discontinued?"

Which ITER/ITPA High-priority Topics Should Macro Focus On?

(Parallels recent guidance by ITPA MHD group leader, A. Sen)

- Disruption characteristics, mitigation
 - Halo currents, peaking; power deposition, vessel forces, runaways (possible?)
 - Understand effect of disruptions(+ ELMS?) on divertor/first wall ('09 XP by SPG)
 - ??Interest in joint disruption modeling effort (NIMROD/M3D, halo currents; EU has program)
 - ?Future: possible use of CT injection for mitigation (Raman, et al.)
- Disruption avoidance: plasma and mode control
 - □ Plasma control requirements (vertical stability, shape, position) joint w/ ISO?
 - Magnetic Diagnostics for ITER (SPG mentioned interest by JEM)
 - NTM mitigation, avoidance of mode locking, role of error fields
 - RWM active control focus on low V_{ϕ} ; future: non-magnetic diagnostics
 - Resonant field amplification, multi-mode EF reduction, IPEC vs. vacuum
 - **2** ??ELM control (NTM/RWM seeding?, effect on V_{ϕ} , joint w/ boundary group)
 - Rotation damping; control
 - Effects of 3-D fields/modes (NTV vs. δB, collisionality; ExB, etc.)
- Mode physics and stabilization
 - **I** NTM stability physics vs. A, marginal island width, ρ^* effects, V_{ϕ} , V_{ϕ} shear
 - RWM stabilization physics V_{ϕ} , collisionality, q; focus on low V_{ϕ} ?

Which Joint Experiments should Macrostability address/lead?

- (S. Kaye suggests 20-30% XPs involve some ITER support; better future follow-up)
- □ MHD group

- NSTX contact identified
- MDC-2: Joint Experiments on RWM Physics (SAS)
- MDC-4: NTM Physics aspect ratio comparison (EF => SPG, EF?)
- ??MDC-5: Comparison of sawtooth control methods for NTM suppression (SPG)
- MDC-12: Non-resonant magnetic braking (SAS)
- MDC-13: Vertical stability physics and performance limits in highly elongated plasmas (DG => DG, SAS?)
- □ MDC-14: V_{ϕ} effects on NTMs (SAS => SPG?)
- Potential new joint experiments (No joint XPs suggested to be closed, led)
 - Define one (or more) on stability aspects of hybrid operation
 - ??Effects of NTMs, ELMs, RWMs in Hybrid Scenarios, effect of plasma rotation, v^*
 - Note: Steady-State Operations has two joint XPs with potential overlap
 - SSO-2.2: MHD in hybrid scenarios and effects on q-profile (Kessel); also
 - SSO-2.3: Rho* dependence on confinement/stability in hybrid scenarios
 - ?Possible joint XP on stability aspects of long pulse discharge reliability

Reliability aspect would make this distinct from aforementioned joint XP