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Reliable, validated calculations of resistive wall mode (RWM) stability, including kinetic effects, are critical
for ITER, which can not tolerate disruptions caused by those modes. Benchmarking the calculations of the
MARS-K, MISK, and PENT codes for two Solov’ev analytical equilibria and a projected ITER equilibrium has
demonstrated good agreement between the codes. The precession drift, bounce, and transit frequencies of
particles, which can each cause a stabilizing resonance with the mode, are consistently evaluated between the
codes, and are used in the frequency resonance energy integral. Numerical energy integral calculations are
consistent between codes as well as with analytical limits. The marginally stable eigenfunctions, perturbed
Lagrangians, and fluid growth rates are all consistent as well. The most important kinetic effect at low rotation
is the resonance between the mode rotation and the trapped thermal particle’s precession drift, and MARS-K,
MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was
treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance
terms at higher plasma rotation. In the Solov’ev case with rational surfaces, the surfaces were integrated over
(MARS-K treatment) and differences in the eigenfunction quantities at rational surfaces cause differences in the
results. In the ITER equilibrium, singular Alfvén resonance contributions at the rational surfaces must be re-
moved from the calculations (MISK treatment) to obtain reasonable results, and subsequently good agreement
between the codes is found. Calculations from all of the codes support the present understanding that RWM
stability can be increased by kinetic effects at low rotation through precession drift resonance and at high
rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability.
The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the
prediction of MISK calculations (computing the contribution of rationals analytically) of near marginal growth
rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX).

I. INTRODUCTION

Tokamak fusion plasmas generate energy most efficiently when the ratio of plasma stored energy to magnetic
confining field energy is high. This ratio can be characterized by the quantity beta-normal: βN . When a plasma
reaches high βN , an MHD kink-ballooning mode of instability can begin to grow. This can lead to a disruption of
the plasma current and a loss of confinement on the relatively short Alfvén time scale. However, the growth rate of
this mode can be slowed quite considerably by the presence of a close-fitting wall around the plasma. This forces the
magnetic perturbations penetrate the wall in order to grow, and the time scale for that penetration is much longer
than the Alfvén time scale. When the mode is converted to the more slowly growing mode in this way, it is called the
resistive wall mode (RWM)1.
Originally it was thought that the presence of a resistive wall could slow down the kink-ballooning mode, but

that the RWM itself could not be stabilized. Experiments soon found, however, that tokamaks could be stably
operated above the no-wall limit, βno−wall

N
2,3. It was then postulated theoretically that the RWM can be stabilized

by a combination of plasma rotational inertia and an energy dissipation mechanism4–6. Simple models proved to
be insufficient to explain experimental results3,7–9, however, and recently theoretical investigation has turned to the
kinetic effects on plasma stability10–32. There are two general approaches to calculating stability of the RWM by
determining ω = ωr + iγ, the complex mode frequency, where ωr is the real mode rotation frequency, and γ is the
growth rate. The first approach is to write a self-consistent set of equations for ω in terms of known quantities and
then to solve the system. This approach has the advantage of self-consistency between the calculation of the mode
frequency ω and the mode displacement ξ⊥.
A different approach is to change the force balance equation into an equation in terms of changes of kinetic and

potential energies (δW ), and then to write a dispersion relation for the complex mode frequency ω in terms of these δW
terms33,34. This approach has been called an “energy principle”35- the principle being that if any small displacement,
ξ⊥, from the equilibrium can be found that causes the potential energy to decrease, the kinetic energy to increase,
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and the displacement to grow exponentially in time, then that equilibrium is unstable. Specifically applicable to the
RWM is the so-called “low-frequency” energy principle33,34,36–38, which requires the inclusion of the particle drift
frequencies, as these can not be considered to be much lower than the mode frequency.
The approach of solving for the δW terms has the advantage of clarity in distinguishing the various stabilizing and

destabilizing effects. In practice, however, one must generally assume a fixed ξ⊥, unchanged by kinetic effects. This
approach is therefore called the “perturbative” approach. In this work we will concentrate on the change of potential
energy that arises from the perturbed kinetic pressure of thermal particles. The RWM dispersion relation can be
written10,11,14:

(γ + iωr)τw =− δW∞ + δWK

δWb + δWK
. (1)

Here τw is the current decay time in the resistive wall, δW∞ is the sum of the plasma fluid and vacuum perturbed
potential energies when the wall is placed at infinity, and δWb is the sum of the plasma fluid and vacuum δW s when
the wall is placed at a specific location b. These two contributions to the energy principle have been theoretically
developed for years39, and computer codes have been written to solve for them, such as PEST40 and DCON41. The
kinetic term, δWK is given by

δWK =− 1

2

∑
j

∫
ξ∗⊥ ·

[
∇ · P̃K

]
dV. (2)

In the fluid approach the perturbed pressure is given in terms of macroscopic quantities. In the kinetic approach
the components of the pressure tensor P̃K , p̃⊥ and p̃∥, are defined by taking moments of the perturbed distribution

function f̃ .
The goal of this work is to benchmark the calculations of kinetic effects on resistive wall mode stability between

three codes, MARS-K, MISK, and PENT. This work builds off of, and greatly expands upon, a previous effort briefly
described below in subsection IA. By group consensus it was decided to compare code calculations for two analytical
equilibria, one a simple, near-circular shape with no n = 1 rational surfaces, and one a shaped equilibria with two
n = 1 rational surfaces, as well as an ITER case. In each case the focus was on the calculation of rotational resonances
of thermal particles, so collisions were ignored and energetic particles were not included. Though obviously important,
it is beyond the scope of this work to fully compare stability calculations to present experimental results, though MISK
calculations have been compared to both National Spherical Torus Experiment42 (NSTX)19–22,24,43,44 and DIII-D26

experimental results and some comparisons between the benchmarked MISK calculations and NSTX results are also
presented here. Benchmarked and validated calculations of RWM stability are important to confidently project the
stability of future devices such as ITER, which can not tolerate disruptions.
The paper is organized as follows. First, the MARS-K, MISK, and PENT codes are briefly described in Sec. II. In

Sec. III the equilibrium configurations that are tested are described. In Sec. IV various important frequencies of the
plasma are compared, which are then used in Sec. V in the energy integral of the frequency resonance fraction. The
three different eigenfunctions used are described in Sec. VI, and are then used in Sec. VII in calculating the perturbed
Lagrangian. The results of the resistive wall mode stability analysis are presented, starting in Sec. VIII with the fluid
δW terms, in Sec. IX with the kinetic δW term, and in Sec. X with the RWM growth rate and rotation frequency.
Finally, the benchmarked calculations of the MISK code are briefly compared to NSTX experiments in Sec. XI.

A. Previous Benchmarking Results

In 2008, the MARS-K and MISHKA+HAGIS codes were benchmarked in Ref. [14], Sec. III-C. The equilibrium used in
that exercise was the same analytical Solov’ev 1 equilibrium that will be described here later, but there were two
differences in the profiles used: both density and ωE were held constant with Ψ in Ref. [14]. The results of that
study, with MISK results added, are included here. Figure 1 shows a comparison between MISK and MARS-K of real and
imaginary δWK for l = 0 trapped thermal ions and electrons.
Note that this figure appears flipped between ions and electrons with respect to the data presented in Fig. 4 of

Ref. [14]. This is due to the assumption of oppositely directed ωE than before (positive in this case as opposed to
negative in the previous case, due to the x-axis definition of nωE with n = −1), which serves to flip the ion and
electron contributions under the assumptions held here (see subsection VA2).
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FIG. 1. a) Real and b) imaginary δWK for l = 0 trapped thermal ions and electrons for the Solov’ev 1 case with flat density
and ωE profiles, as calculated by MARS-K, MISK, and MISHKA+HAGIS.

II. CODES

Various codes have been developed that can incorporate kinetic effects in stability calculations. In addition to the
three described here, one prominent example is the combination of the MISHKA45 and HAGIS46 codes.

A. MARS-K

MARS-K (Magnetohydrodynamic Resistive Spectrum - Kinetic code) is a toroidal MHD-kinetic hybrid stability
code14,47 that solves the eigenvalue problem derived from the linearized single-fluid ideal/resistive MHD equations
with toroidal flow, self-consistently including the drift kinetic effects in full toroidal geometry. The approach allows
the kinetic effects associated with the thermal or energetic particles to consistently modify the mode eigenfunction,
which could significantly influence the mode stability and structure in certain circumstances31. The code simulates a
plasma surrounded by a pure vacuum region, includes a set of radially separated, toroidally complete resistive walls
and a set of magnetic coils located in the vacuum region. With these features, MARS-K has been successfully applied
to physical study and support of experiments on various subjects such as MHD instabilities (e.g. resistive wall mode
and tearing mode), and plasma response to external fields (e.g. resonant filed amplification and resonant magnetic
perturbation).

B. MISK

The MISK, or Modification to Ideal Stability by Kinetic effects, code11 calculates the change in potential energy
of the plasma due to kinetic effects, δWK . Along with the fluid δW terms calculated using a marginally stable
eigenfunction with the PEST code40, the dispersion relation or energy principle including kinetic effects is used to
predict the growth rate of the resistive wall mode. This approach assumes that kinetic effects do not change the
eigenfunction, and that the mode growth rate and frequency are small, so their nonlinear inclusion is unimportant.
Cases which are above the ideal no-wall limit, and therefore would be unstable without kinetic effects, are examined.
MISK has been used extensively (see Refs. [12, 19–24, 26, 43, and 44]), and good agreement between the theory and
experimental trends have been found.

C. PENT

The Ideal Perturbed Equilibrium Code48 (IPEC) has been successfully applied to study the basic feature of plasma
responses to small 3D fields in tokamaks. The code utilizes the Euler-Lagrange equation in DCON to solve the ideal
force balance and couples solutions to the external 3D field. Recently calculations of neoclassical toroidal viscosity
(NTV), based on the combined NTV formula without large-aspect-ratio approximation, have been implemented in a
new Perturbed Equilibrium Nonambipolar Transport (PENT) code49, which is meant to interface with IPEC. Because
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the NTV torque is mathematically equivalent to the imaginary part of the kinetic δW 50, PENT calculates an identical
energy integral to MISK and MARS-K51, and therefore can be used in this benchmarking study.

III. EQUILIBRIA

Three equilibria were agreed upon for this benchmarking exercise: an analytical equilibrium with nearly circular
surfaces and no rational surfaces, an analytical equilibrium with shaped surfaces and two rationals, and finally a
projected ITER equilibrium.

A. Solov’ev Equilibrium

The Solov’ev equilibrium52,53 is an analytical equilibrium solution to the Grad-Shafranov equation for the polodial
current function F = RBt (with R the major radius and Bt the toroidal magnetic field), and the pressure profile
P (ψ), where ψ is the magnetic flux coordinate. In MARS-K, the Solov’ev equilibrium is written14:

F (ψ) = 1. (3)

µ0

B2
0

P (ψ) = −1 + κ2

κR3
0q0

ψ. (4)

ψ =
κ

2R3
0q0

[
R2Z2

κ2
+

1

4

(
R2 −R2

0

)2 − ϵ2aR
4
0

]
. (5)

This ψ ranges from a negative value at the axis (−ψ0) to zero at the edge. A normalized flux can be written
ψn = ψ/ψ0 + 1, which goes from 0 on axis to 1 at the edge. In addition to B0, the magnetic field on axis, and R0,
the major radius of the plasma axis, three quantities must be specified: the elongation κ, the safety factor on axis
q0, and the inverse aspect ratio ϵa = a/R0, where a is the plasma minor radius. The plasma boundary is specified in
(R,Z) coordinates by:

Rb = R0 (1 + 2ϵa cos θ)
1
2 , (6)

Zb =
R0ϵaκ sin θ

(1 + 2ϵa cos θ)
1
2

. (7)

MISK uses the PEST code40 to provide the eigenfunction and fluid δW terms. The Solov’ev equilibrium can be
explicitly input into PESTa, and it is written:

F (Ψ) = 1. (8)

µ0

B2
0

P (Ψ) = p0 −
Ψ

2π

√
2c1p0(1 + c23)

Ψlim
. (9)

Ψ = c1

[
Z2
(
R2 − c2

)
+
c23
4

(
R2 −R2

0

)2]
. (10)

a To use the analytical Solov’ev equilibrium in PEST, one sets &glotcl lanal=.true., in both mapin and modin. Then one specifies the
above quantities in mapin where c1, c2, and c3 are listed under &kerdat as c1, c2, and c3, p0 is listed under &prof as p0, Ψlim is listed
under &magax as psilim, and R0 is listed under &size as r. Also, αp must be set in modin under &cprofl as alphap.
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Here the PEST Ψ goes from 0 at the axis to a positive value, Ψlim, at the edge, and is related to the MARS-K ψ by:

ψ = (Ψ−Ψlim) /2π. (11)

The specifications are:

c1 =
1

2κR3
0q0

2π (12)

c2 = 0 (13)

c3 = κ (14)

Ψlim =
ϵ2aR0κ

2q0
2π (15)

p0 =
1 + κ2

2

ϵ2a
R2

0q
2
0

(16)

αp =

√
2c1p0(1 + c23)

Ψlim
=

1 + κ2

κq0R3
0

. (17)

Note that for the Solov’ev cases, the q profile can be analytically determined from54:

q = q0
2

π

√
1 + 2ϵr
1− 4ϵ2r

E(k), (18)

where E is the complete elliptic integral of the second kind, k ≡
√

4ϵr/(1 + 2ϵr), and εr = r/R0 (with r = R−R0).

1. Solov’ev case 1

The equilibrium designated “Solov’ev 1” was used in Ref. [14], and is near-circular (Fig. 2a), with no rational
surfaces (Fig. 3a). It is specified by the parameters κ = 1, q0 = 1.2, and ϵa = 0.2, and has a qedge = 1.41371. For the
Solov’ev 1 case, the bounce harmonics from l = −15 to +18 are used.

2. Solov’ev case 3

The equilibrium designated “Solov’ev 3” was also used in Ref. [14]. This equilibrium is shaped (Fig. 2b), and
contains the q = 2 and 3 rational surfaces within the plasma (Fig. 3b). It is specified by the parameters κ = 1.6,
q0 = 1.9, and ϵa = 0.33, and has a qedge = 3.263. For the Solov’ev 3 case, the bounce harmonics from l = −24 to +38
are used.
Note that due to geometrical convention in the MARS-K code, both Solov’ev eigenfunctions will be considered to

have n = −1 toroidal mode numbers.

B. ITER

The ITER equilibrium used is the same as is used in the International Tokamak Physics Activity (ITPA) working
group 7 (WG-7), using the current design of the ITER target for 9 MA operation55, with βN = 2.9. It has R0 = 6.2
m, B0 = 5.3 T, the shape shown in Fig. 4 and the q profile shown in Fig. 5. For the ITER case, MARS-K used
bounce harmonics from l = −48 to l = +78, while MISK used l = −4 to +4. Larger bounce harmonics contribute
diminishingly to the kinetic effects and it was found that |l| > 4 was negligible in the MISK calculation. Also, the MISK
and MARS-K calculations both avoided a region of ∆q = ±0.1 around each rational surface to eliminate unreasonably
high calculated stabilizing effects from the rational surfaces, as will be discussed in section IXC.
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FIG. 2. a) The Solov’ev 1 equilibrium and b) the Solov’ev 3 equilibrium, showing flux surfaces at the edge (blue) and
r/R0 = 0.02, 0.08, and 0.18 (red). These last three are compared to their equivalent circles (dashed). Finally, conformal walls
having rw/a = 1.15 for Solov’ev 1 and rw/a = 1.10 for Solov’ev 3 are shown in black (see section VIII).
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FIG. 3. a) The Solov’ev 1 equilibrium and b) Solov’ev 3 equilibrium q profiles.

IV. FREQUENCY COMPARISONS

A. Density, Temperature, Pressure, and Rotation Frequency Profiles

We will assume for the Solov’ev cases that there are no energetic particles, only thermal ions and electrons, and
that the ion and electron densities and temperatures are equal, ne = ni and Te = Ti. Also, for the purposes of
determining P from Eqs. 4 or 9, we now set R0 = 1m and B0 = 1T. Then the pressure has the form P = P0(1−ψn),
with P0 = 2.210× 104 Pa for Solov’ev 1, and P0 = 4.273× 104 Pa for Solov’ev 3.

Finally we must specify the density profile n(Ψ). For the Solov’ev cases, we use n = n0(1−0.7Ψn). Then the density
on axis, n0, is determined by specifying (ωci/ωA)0, where the Alfvén frequency on axis ωA0 = B0/(R0

√
µ0mini0) and

the ion cyclotron frequency on axis ωci0 = eB0/mi = 47.906 × 106 rad/s. For the comparisons here, we will use
(ωci/ωA)0 = 121, to be consistent with Ref. [14], even though this results in the values of ωA0 = 395.914 krad/s and
the unrealistically high density n0 = 1.518× 1021 m−3.
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FIG. 4. The ITER equilibrium, showing a flux surface at the edge (blue) and r/R0 = 0.18 (red). Also shown are the ITER
double wall (black), and a conformal wall with rw/a = 1.5 (green).
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FIG. 5. The ITER equilibrium q profile.

The temperature profile is then determined from T = P/(2n). For the Solov’ev cases this means T = (P0/2n0)(1−
Ψn)/(1− 0.7Ψn).

For the Solov’ev cases we will use the E × B frequency profile ωE = ωE0 (1−Ψn), and a range of constant values
of ωE0. For the moment, we will assume ωE/ωA0 = 1× 10−2 or ωE0 = 3.959 krad/s as a nominal value. Throughout
this document results are presented as functions of ωE0/ωA0 and also as single values. When not explicitly specified,
the value of ωE0/ωA0 should be assumed to be 1× 10−2. The toroidal rotation frequency, ωϕ can then be found by a
radial force balance so that ωϕ = ωE + ωi

∗N + ωi
∗T , where ω

i
∗N and ωi

∗T are defined in the next subsection. Poloidal
rotation is assumed to be negligible.

For the ITER case instead of using analytically prescribed functions for the pressure, density, temperature, and
rotation, we will use profiles determined for the WG-7 ITER equilibrium, which represents an ITER steady-state
scenario. Additionally, the ITER case will have three separate species, each with their own pressure: deuterium ions,
electrons, and alpha particles (tritium is not considered). The following are given, as profiles of Ψ: nα/(ne + ni), ne,
Te, Ti, Pα/(Pe + Pi), and ωϕ. The ion density is taken to be equal to the electron density, ie. quasineutrality is not
enforced. The ion and electron pressures are determined from Pe = neTe, and Pi = niTi, which then determines Pα
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as well, although alpha particles are not actually used in this study. The nominal value of ωE0/ωA0 calculated from
these parameters is 1.62× 10−2 for the ITER case.
Figure 6 shows the profiles of density, pressure, and temperature, normalized to the axis values, which are given

in Table I. Figure 6 also shows profiles of rotation and the diamagnetic frequencies, ω∗N and ω∗T . These are also
normalized to the axis values, found in Table II, along with the consistent ωE0 values.

B. Diamagnetic Frequencies

The density and temperature gradient components of the diamagnetic frequency are defined in [rad/s] as:

ωj
∗N = − Tj

Zjenj

dnj

dΨ
, (19)

ωj
∗T = − 1

Zje

dTj
dΨ

. (20)

For the Solov’ev equilibria these can be written analytically as:

ωi
∗N = −ωe

∗N =
0.7T0/e

Ψa

(
1−Ψn

(1− 0.7Ψn)
2

)
, (21)

ωi
∗T = −ωe

∗T =
0.3T0/e

Ψa

(
1

(1− 0.7Ψn)
2

)
, (22)

where Ψa = −ψ0 = Ψlim/2π from Eq. 15.

C. Collision Frequency

Although in general collisionality can impact kinetic stability calculations, and there are various ways of expressing
collisionality22, for the comparisons here, all collision frequencies are taken to be zero. This decision was taken to
avoid the complication of the effect of collisionality and to allow focus on the computation and comparison of other
physics aspects in the codes.



9

      

 

 

 

 

 

 

ITER nα

ITER ne, ni

Solovev ne, ni

a)

0.0 0.2 0.4 0.6 0.8 1.0
Ψn

0.0

0.2

0.4

0.6

0.8

1.0

n
/n

0

      

 

 

 

 

 

 

      

 

 

 

 

 

 

ITER pα

ITER pi

ITER pe

Solovev pe, pi

b)

0.0 0.2 0.4 0.6 0.8 1.0
Ψn

0.0

0.2

0.4

0.6

0.8

1.0

P
/P

0

      

 

 

 

 

 

 

      

 

 

 

 

 

 

ITER Ti

ITER Te

Solovev Te, Ti

c)

0.0 0.2 0.4 0.6 0.8 1.0
Ψn

0.0

0.2

0.4

0.6

0.8

1.0

T
/T

0

      

 

 

 

 

 

 

      

 

 

 

 

 

 

ITER ω*Ni

ITER ω*Ne

Solovev ω*N
e)

0.0 0.2 0.4 0.6 0.8 1.0
Ψn

0

1

2

3

4

5

ω
/ω

0

      

 

 

 

 

 

 

      

 

 

 

 

 

 

 

ITER ω*Ti

ITER ω*Te

Solovev ω*T
f)

0.0 0.2 0.4 0.6 0.8 1.0
Ψn

0

2

4

6

8

10

12

ω
/ω

0

      

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

ITER ωφ

Solovev 3 ωφ

Solovev 1 ωφ

d)

0.0 0.2 0.4 0.6 0.8 1.0
Ψn

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ω
/ω

0

      

 

 

 

 

 

 

 

 

FIG. 6. Normalized profiles of a) density, b) pressure, c) temperature, d) rotation, e) ω∗N , and f) ω∗T .

ni0[10
19m−3] ne0[10

19m−3] nα0[10
19m−3] pi0 [kPa] pe0 [kPa] pα0 [kPa] Ti0 [keV] Te0 [keV]

Solov’ev 1
151.795 0

11.052
0

0.045

Solov’ev 3 21.365 0.088

ITER 7.220 0.167 362.306 396.200 156.739 31.320 34.250

TABLE I. Density, pressure, and temperature values on axis for each of the cases.
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ωϕ0 ωE0 ω∗Ne0 ω∗Ni0 ω∗Te0 ω∗Ti0

Solov’ev 1 6.675
3.959∗

1.902 0.820

Solov’ev 3 5.858 1.339 0.578

ITER 37.34∗ 25.13 -0.968 0.880 6.032 11.34

TABLE II. Rotation frequency, ωE , ω∗N , and ω∗T values on axis for each of the cases, all in krad/s. ∗nominal values.
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D. Bounce Frequency

Figure 7a shows the normalized, dimensionless ion bounce frequencies calculated by MARS-K, MISK, and PENT com-
pared to the large aspect ratio approximation, using the Solov’ev 1 equilibrium at the ϵr = 0.08, ψn = 0.160 surface
vs. Λ. Figure 8a shows the normalized ion bounce frequencies calculated by MARS-K, MISK, and PENT compared to
the large aspect ratio approximation, using the Solov’ev 3 equilibrium at the ϵr = 0.33, ψn = 1 surface (the plasma
boundary) vs. Λ.
Figure 9a shows the normalized ion bounce frequencies calculated by MARS-K, MISK, and PENT, using the ITER

equilibrium at the ϵr = 0.322, ψn = 0.982 surface (very close to the plasma boundary) vs. Λ.
Figure 10a shows the normalized ion bounce frequencies calculated by MARS-K, MISK, and PENT at maximum Λ

compared to the deeply trapped particle limit, using the Solov’ev 1 equilibrium and the Solov’ev 3 equilibrium vs. ϵr.
Below we will describe the large aspect ratio and deeply trapped limit formulae for the bounce frequency to which

the calculations have been compared. However, the bounce frequency used in each code is calculated without these
approximations.

1. Large Aspect Ratio Formula

In the large aspect ratio limit, the particle bounce frequency can be written13,56:

ωb√
2ε/mi

=

√
2ϵrΛ

4qR0

π

K(k)
(trapped), (23)

ωb√
2ε/mi

=

√
1− Λ + ϵrΛ

2qR0

π

K(1/k)
(circulating). (24)

where Λ is a pitch angle variable defined by Λ = µB0/ε with µ = mv2⊥/2B the magnetic moment and ε = mv2/2 the
kinetic energy of the particle (m and v are the mass and velocity of the particle), K is the complete elliptic integral
of the first kind, and

k =

[
1− Λ + ϵrΛ

2ϵrΛ

] 1
2

. (25)

2. Deeply Trapped Particle Formula

In the limit of deeply trapped particles, one can show that for the Solov’ev equilibrium the bounce frequency can
be written54:

ωb√
2ε/mi

=
1

q0

(
F 2

1 + 2ϵr
+
κ2ϵ2r
q20

)−1
[

F 2ϵr
2 (1 + 2ϵr)

+
κ2ϵ3r
q20

+

(
1− κ2

)
ϵ2r

2q20
(1 + 2ϵr)

] 1
2

(26)
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FIG. 7. a) Ion bounce frequency and b) ion precession drift frequency calculated by MISK, MARS-K, and PENT compared to the
large aspect ratio approximation for the ϵr = 0.08 surface of the Solov’ev 1 case, vs. Λ. The left branch of a) is for circulating
ions and the right branch is for trapped ions. Plot b) can be directly compared to the same one produced by MARS-K in Ref. [14],
Fig. 1(b).

a)

r/R0 = 0.33

Cylinder
PENT
MISK
MARS-K

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Λ = µB0/ε

0.01

0.10

1.00

ω
b
/

(2
ε/

m
i)1/

2  *
R

0

        

 

 

 

b)r/R0 = 0.33

Cylinder
PENT
MISK
MARS-K

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Λ = µB0/ε

-15
-10

-5

0

5

10

15

20

ω
D
/

(ε
/

Z
je

)*
(R

02 B
0)

         

 

 

 

 

 

 

 

 

FIG. 8. a) Ion bounce frequency and b) ion precession drift frequency calculated by MISK, MARS-K, and PENT compared to the
large aspect ratio approximation at the outer surface of the Solov’ev 3 case, vs. Λ. The left branch of a) is for circulating ions
and the right branch is for trapped ions.
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FIG. 9. a) Ion bounce frequency and b) ion precession drift frequency calculated by MISK, MARS-K, and PENT at the ϵr = 0.322
surface (very close to the outer surface) of the ITER case, vs. Λ. The left branch of a) is for circulating ions and the right
branch is for trapped ions.
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FIG. 10. a) Ion bounce frequency and b) ion precession drift frequency calculated by MISK, MARS-K, and PENT at maximum Λ
compared to the deeply trapped particle limit for the Solov’ev 1 and 3 cases, vs. ϵr.

E. Magnetic Precession Drift Frequency

Figure 7b shows the normalized ion precession drift frequencies calculated by MARS-K, MISK, and PENT compared
to the large aspect ratio approximation, using the Solov’ev 1 equilibrium at the ϵr = 0.08, ψn = 0.160 surface,
vs. Λ. A more sophisticated analytic approach to calculate the precession drift frequency for arbitrarily shaped
toroidal plasmas, by doing a higher order expansion of the toroidal equilibrium in terms of toroidicity, elongation,
triangularity, etc... was also compared to this case and was quite close to the MARS-K result57.
Figure 8b shows the normalized ion precession drift frequencies calculated by MARS-K, MISK, and PENT compared to

the large aspect ratio approximation, using the Solov’ev 3 equilibrium at the ϵr = 0.33, ψn = 1 surface (the plasma
boundary), vs. Λ.
Figure 9b shows the normalized ion precession drift frequencies calculated by MARS-K, MISK, and PENT, using the

ITER equilibrium at the ϵr = 0.322, ψn = 0.982 surface (very close to the plasma boundary) vs. Λ.
Figure 10b shows the normalized ion precession drift frequencies calculated by MARS-K, MISK, and PENT at maximum

Λ compared to the deeply trapped particle limit, using the Solov’ev 1 equilibrium and the Solov’ev 3 equilibrium vs. ϵr.
Below we first will describe the large aspect ratio and deeply trapped limit formulae for the precession drift frequency

to which the calculations have been compared. Then the general formula used in the codes is described.

1. Large Aspect Ratio Formula

The large aspect ratio precession drift frequency for trapped particles13,14:

ωD

ε/(Zje)
=

2qΛ

R2
0ϵrB0

[
(2s+ 1)

E (k)

K (k)
+ 2s

(
k2 − 1

)
− 1

2

]
, (27)

where s = (r/q)(dq/dr) is the magnetic shear and E is the complete elliptic integral of the second kind.
We can also write this expression in a way that separates it into a “main” term and a “q shear” term:

ωD

ε/(Zje)
=

2qΛ

R2
0ϵrB0

[
E (k)

K (k)
− 1

2

]
+

2qΛ

R2
0ϵrB0

[
2s

(
E (k)

K (k)
+ k2 − 1

)]
. (28)

2. Deeply Trapped Particle Formula

In the limit of deeply trapped particles, one can show that for the Solov’ev equilibrium the precession drift frequency
can be written54:
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ωD

ε/(Zje)
=

q0
R0κϵr

(
F 2

1 + 2ϵr
+
κ2ϵ2r
q20

)−1 [
F 2

(1 + 2ϵr)2
− κ2ϵr

q20

]
(29)

3. General Formula

The general formula for the bounce-averaged magnetic precession drift frequency comes from Ref. [58], and is given
by:

ωD =
1

Zje

∂J/∂Ψ

∂J/∂ε
, (30)

where

J =

∫
mjv∥dℓ, (31)

is the equilibrium longitudinal invariant of the particle parallel motion (ℓ is the particle trajectory). This equation
for ωD is broken into two parts. Using a definition of the bounce time, τ = ∂J/∂ε,58 we have:

ωD =
ε

Zje

1

τ

2

v2
∂

∂Ψ

(∫
v∥dℓ

)
(32)

=
ε

Zje

1

τ

2

v2

[∫
∂v∥

∂Ψ
dℓ+

∫
v∥
∂dℓ

∂Ψ

]
(33)

=
ε

Zje

1

τ

∫
dℓ

v∥

[
1

v2

∂v2∥

∂Ψ

]
+

ε

Zje

1

τ

∫
2v∥

v2
∂

∂Ψ

(
dℓ

dθ

)
dθ (34)

Let us now define58

g =
B2

θ

B

dℓ

dθ
. (35)

Then

ωD =
ε

Zje

1

τ

∫
dℓ

v∥

[
1

ε

∂

∂Ψ
(ε− µB)

]
+

ε

Zje

1

τ

∫
2v∥

v2
∂

∂Ψ

(
gB

B2
θ

)
dθ (36)

= − ε

Zje

1

τ

∫
dℓ

v∥

[
µ

ε

∂B

∂Ψ

]
+

ε

Zje

1

τ

∫
2v∥

v2
gB

B2
θ

(
1

g

∂g

∂Ψ
+
B2

θ

B

∂

∂Ψ

(
B

B2
θ

))
dθ (37)

= − ε

Zje

1

τ

∫
dℓ

v∥

[
Λ

B0

∂B

∂Ψ

]
+

ε

Zje

1

τ

∫
dℓ

2v∥

v2

[
B2

θ

B

∂

∂Ψ

(
B

B2
θ

)
− 1

B2
θ

(
µ0

∂p

∂Ψ
+

F

R2

∂F

∂Ψ

)]
, (38)

where we have used58

1

g

∂g

∂Ψ
= − 1

B2
θ

(
µ0

∂p

∂Ψ
+

F

R2

∂F

∂Ψ

)
. (39)

Equation 38 is the form for ωD used in MARS-K. The first term is called Dµ and the second term is DB . An equivalent
expression is used in MISK.
Note that at the turning points v∥ → 0 causes a singularity in Eq. 38, but this singularity is integrable.
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V. ENERGY INTEGRAL OF THE FREQUENCY RESONANCE FRACTION

A major part of the kinetic calculation is the energy integration of the frequency resonance fraction:

Iε (Ψ,Λ, l) =
1

2

∑
σ=±1

∫ ∞

0

n
(
ω∗N +

(
ε̂− 3

2

)
ω∗T

)
+ nωE − ωr − iγ

nωD + σ (l + αnq)ωb − iνeff + nωE − ωr − iγ
ε̂

5
2 e−ε̂dε̂. (40)

where ε̂ = ε/T , and α = 0 for trapped particles or α = 1 for circulating particles, σ is the sign of v∥, and the

factor of 1
2 is added for convenience (for example, so that for trapped particles, the factor of 2 that results from the

summation over σ is canceled). Here l is the bounce harmonic and n is the toroidal mode number (not the density),
and it will be taken as n = −1 for the comparisons presented here, to be consistent with the MARS-K geometrical
convention. The energy integral can be evaluated based only upon the frequencies already described, for both ions
and electrons. Nominally, νeff = 0 as specified in subsection IVC, and we will take ωr = 0 and γ = 0. Note that
when collisionality is zero, having a small imaginary component (via γ) in the denominator is beneficial to avoid
singularities in the integration24. Since we are taking νeff = 0 and γ = 0, there are poles on the real energy axis,
which must be accounted for (see next subsection).
If we choose a particular Ψ surface, then ω∗N , ω∗T , and ωE are constants defined by Figs. 6d-f and Table II. The

precession drift and bounce frequencies are functions of both Λ and ε̂ still, as indicated in Figs. 7, 8, and 9.

A. Analytical Solutions

One major historical difference between MISK and MARS-K is that MISK performed the energy integration numerically,
whereas MARS-K performed it analytically13. Analytical solutions are possible only under certain constraints. For
example, νeff must not have energy dependence and when l ̸= 0 one must assume ωD = 0 (ωD ≪ ωb). Since
this is the approach taken in MARS-K and in MISK’s analytical mode, we have used this assumption in PENT and in
MISK’s numerical mode for the purposes of this benchmarking. MARS-K, however, has recently implemented numerical
integration, and can now treat energy-dependent collisionality. Therefore both MISK and MARS-K now have the
capability to perform the energy integral either analytically or numerically. Although they were not used in that way
in the present comparisons, in general each code can have energy-dependent collisionality and both precession and
bounce frequencies simultaneously.

1. CGL Limit

In the Chew-Goldberger-Low (CGL) limit, |ωE − ω| → ∞ and therefore

Iε (Ψ,Λ, l) → ICGL
ε =

∫ ∞

0

ε̂
5
2 e−ε̂dε̂ =

15
√
π

8
. (41)

In this limit δWK is purely real, and independent of the mode-particle resonances. This allows a good check on the
perturbed Lagrangian part of the problem.

2. νeff = constant (no energy dependence), and l = 0 for trapped particles

This is the case for trapped particles without energy-dependent collisions, with only the precession drift and no
bounce frequency,

Iε =

∫ ∞

0

Ωa
∗ +Ωn + ε̂Ωb

∗
ε̂+Ωn

ε̂
5
2 e−ε̂dε̂, (42)

where Ωn = (nωE − ω − iνeff)/(nωD), Ωa
∗ = (nω∗N − 3

2nω∗T + iνeff)/(nωD), Ωb
∗ = ω∗T /ωD, and ωD = ωD ε̂ (ie. ωD

is the non-energy dependent portion of ωD). Note that when ω = 0 and νeff = 0, each Ω is independent of n in this
case and so Iε for l = 0 trapped particles will not change whether n = 1 or −1. The solution to the above expression
is given in Ref. [13], Eq. 30:
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FIG. 11. A comparison of the calculation from MARS-K and MISK of the imaginary part of the plasma dispersion function, Z(y),
for purely imaginary y, to the curves given in Ref. [59].

Iε =
15

√
π

8
Ωb

∗ + 2
√
π
(
Ωn +Ωa

∗ − ΩnΩ
b
∗
) [3

8
− 1

4
Ωn +

1

2
Ω2

n + i
1

2
Ω

5
2
nZ
(
iΩ

1
2
n

)]
. (43)

Without considering collisions, the only difference at this point between ions and electrons (with ni = ne and
Ti = Te) are the signs of ωD, ω∗N , and ω∗T . Therefore Ωa

∗ and Ωb
∗ are the same, while Ωn has the opposite sign for

ions and electrons. One can now easily see that changing the sign of nωE serves to effectively flip the identity of ions
and electrons, as mentioned in section IA.
Here Z is the plasma dispersion function (Refs. [59], [13], and [60] (section 10.6)), given by:

Z(y) =
1√
π

∫ ∞

−∞

e−u2

u− y
du. (44)

In our case y = iΩ
1
2
n . If we consider the collisionless case, Ωn is real, so y is purely imaginary, which makes Re(Z) = 0

[59]. A comparison of the imaginary part of the plasma dispersion function calculation is shown in Fig. 11.
Note that the resonance condition of Eq. 42 is ε̂ = −Re(Ωn). Therefore this solution is valid and there are no

poles on the real, positive energy axis as long as Re(Ωn) > 0 or Im(Ωn) ̸= 0, ie. there exists some finite damping,
γ + νeff ̸= 0. If there are poles along the path of integration, then their residues must be calculated. Equation 42 can
be written as

∫
f(z)dz, where z = ε̂, and the residue is given by

Res(f, z → −Ωn) = lim
z→−Ωn

(z +Ωn) f(z) =
(
Ωn +Ωa

∗ − ΩnΩ
b
∗
)
(−Ωn)

5
2 eΩn (45)

Finally, one must also be careful of the locations in (Ψ,Λ) space where there is a drift reversal (ωD goes through
zero). In this case, one can show that the analytical solution to Eq. 40 is:

Iε =
15
√
π

8

[
n (ω∗N + 2ω∗T ) + nωE − ωr − iγ

−iνeff + nωE − ωr − iγ

]
, (46)

or, equivalently,

Iε =
15
√
π

8

[
1 +

Ωa
∗

Ωn

]
+

105
√
π

16

[
Ωb

∗
Ωn

]
. (47)
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FIG. 12. A comparison of the calculation from MARS-K and MISK of the a) real and b) imaginary parts of the plasma dispersion
function, Z(y), for purely real y, to the curves given in Ref. [59].

3. νeff = constant (no energy dependence), l ̸= 0 for trapped particles, and |ωD| ≪ |lωb|

This is the case again without energy-dependent collisions, for trapped particles with l ̸= 0 where the precession
drift frequency is neglected with respect to the bounce frequency. If we now define Ωn2 = (nωE − ω − iνeff)/(lωb),

Ωa2
∗ = (nω∗N − 3

2nω∗T + iνeff)/(lωb), Ω
b2
∗ = nω∗T /lωb, and ωb = ωbε̂

1
2 (ie. ωb is the non-energy dependent portion of

ωb), then

Iε =

∫ ∞

0

Ωa2
∗ +Ωn2 + ε̂Ωb2

∗
nωD

lωb
ε̂+ ε̂

1
2 +Ωn2

ε̂
5
2 e−ε̂dε̂. (48)

With nωD/lωb → 0 this can be written

Iε =− 15
√
π

8
Ωn2Ω

b2
∗ + 2

(
Ωn2 +Ωa2

∗ +Ω2
n2Ω

b2
∗
) [

−
√
πΩn2

(
3

8
+

1

4
Ω2

n2 +
1

2
Ω4

n2

)
−

√
π

2
Ω6

n2Z (Ωn2)

+

(
1 +

1

2
Ω2

n2 +
1

2
Ω4

n2

)
+Ω6

n2e
−Ω2

n2

(∫ 1

0

e−|Ωn2|2t2 − eΩ
2
n2t

2

t
dt+

∫ 1

0

e−|Ωn2|2/t2

t
dt− i(∠Ωn2 −

π

2
)

)]
+ 6Ωb2

∗ .

(49)

The second line above is odd with respect to Ω, and therefore odd in n as well (for ω = 0 and νeff = 0). Therefore
the second line will change sign when n changes from 1 to −1. However, since the calculation of δWK involves a
summation over all l (positive and negative), this will not affect the final answer.
Note that in the collisionless case Ωa2

∗ and Ωn2 are purely real (as well as Ωb2
∗ ), and the terms where imaginary Iε

comes from can be gathered together as:

Y (Ωn2) = −
√
π

2
Ωn2Z (Ωn2) + Ωn2e

−Ω2
n2

(∫ 1

0

e−|Ωn2|2t2 − eΩ
2
n2t

2

t
dt+

∫ 1

0

e−|Ωn2|2/t2

t
dt− i(∠Ωn2 −

π

2
)

)
. (50)

Plots of Z(y) and Y (y) for real y are included in Figs. 12 and 13. Collisions will not be included in this work,
however damping from finite γ will be explored briefly in section IXB. In that case imaginary Iε comes from all
terms, but it is important to show that the calculation of Z(y) and Y (y) are correct for complex y. One must be
cautious about the ∠Ωn2 term in the above equation, as it can change the sign of the imaginary part of Y . Figures
14 and 15 show these comparisons.
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FIG. 13. A comparison of the calculation of the a) real and b) imaginary parts of Y (y), for purely real y, between MARS-K and
MISK.

-5 -4 -3 -2 -1 0 1 2 3 4 5
a

-0.6
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

(Z
)

Z(y), y = a + ib, b = 1

a)

Fried and Conte

MISK

MARS-K

-5 -4 -3 -2 -1 0 1 2 3 4 5
a

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Im
(Z

)

Z(y), y = a + ib, b = 1 b)

Fried and Conte

MISK

MARS-K

FIG. 14. A comparison of the calculations from MARS-K and MISK of the a) real and b) imaginary parts of the plasma dispersion
function, Z(y), for complex y, to the curves given in Ref. [59].

4. νeff = constant (no energy dependence), for circulating particles, and |ωD| ≪ |σ(nq + l)ωt|

Note that Eq. 49 can also be used for circulating particles, with lωb → σ(nq + l)ωt, where ωt indicates the transit
frequency. The inclusion of σ (the sign of v∥) actually means that the terms that are odd in Ω in Eq. 49 will cancel
out when the summation over positive and negative σ are taken. Therefore, for circulating particles, a simplified
expression can be used in which only the first line of Eq. 49 is used:

Iε =− 15
√
π

8
Ωn2Ω

b2
∗ + 2

(
Ωn2 +Ωa2

∗ +Ω2
n2Ω

b2
∗
) [

−
√
πΩn2

(
3

8
+

1

4
Ω2

n2 +
1

2
Ω4

n2

)
−

√
π

2
Ω6

n2Z (Ωn2)

]
. (51)

This expression is once again even in n, and so it will not change whether n is positive or negative.

B. Energy Integral Comparison

Performing the energy integration, we can plot Iε as a function of Λ. Figure 16 shows each l component of Iε
from -2 to 2 for trapped thermal ions in the Solov’ev 1 equilibrium at r/R0 = 0.08 (Ψn = 0.16), the same surface
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FIG. 15. A comparison of the calculation of the a) real and b) imaginary parts of Y (y), for complex y, between MARS-K and
MISK.

chosen in Fig. 7. Figures 17 and 18 show each l component of Iε from -2 to 2 for trapped thermal ions in the Solov’ev
3 equilibrium at r/R0 = 0.252 (Ψn = 0.585, q = 2.5), and the ITER equilibrium at r/R0 = 0.322 (Ψn = 0.982),
respectively. The traces are plotted as l/n so that they are equivalent for n = −1 or n = 1.
Figure 19 shows each l component of Iε from -2 to 2 for circulating thermal ions in the Solov’ev 1 equilibrium at

r/R0 = 0.08 (Ψn = 0.16), while Fig. 20 shows the same at Ψn = 0.64.
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FIG. 16. a) Real and b) imaginary components of Iε for each l/n from -2 to 2, vs. Λ for trapped thermal ions in the Solov’ev
1 equilibrium at r/R0 = 0.08 (Ψn = 0.16), calculated by MARS-K, MISK, and PENT.
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FIG. 17. a) Real and b) imaginary components of Iε for each l/n from -2 to 2, vs. Λ for trapped thermal ions in the Solov’ev
3 equilibrium at r/R0 = 0.252 (Ψn = 0.585, q = 2.5), calculated by MISK and PENT.
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FIG. 18. a) Real and b) imaginary components of Iε for each l/n from -4 to 4, vs. Λ for trapped thermal ions in the ITER
equilibrium at r/R0 = 0.322 (Ψn = 0.982), calculated by MISK and PENT.
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FIG. 19. a) Real and b) imaginary components of Iε for each l/n from -2 to 2, vs. Λ for circulating thermal ions in the Solov’ev
1 equilibrium at r/R0 = 0.08 (Ψn = 0.16), calculated by MARS-K, MISK, and PENT.
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FIG. 20. a) Real and b) imaginary components of Iε for each l/n from -2 to 2, vs. Λ for circulating thermal ions in the Solov’ev
1 equilibrium at Ψn = 0.64, calculated by MARS-K and MISK.
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FIG. 21. Normalized mass density profiles for the Solov’ev and ITER cases. The dashed lines are the approximations used in
PEST (overlays in the Solov’ev case).

VI. EIGENFUNCTION COMPARISON

The normalized mass density profile, ρ/ρ0, affects the eigenfunction. For the Solov’ev case, the normalized mass
density profile ρ/ρ0 = (mene +mini +mαnα)/(mene0 +mini0 +mαnα0) reduces to ρ/ρ0 = 1− 0.7Ψn. For the ITER
case ρ/ρ0 is calculated from the individual density profiles and plotted in Fig. 21, along with the linear profile for the
Solov’ev cases. PEST is limited in the mass density profiles it can take as an input, so approximations are used, which
are shown in dashed lines.
Figures 22a, 24a, and 26a compare the poloidal Fourier harmonics of the normal displacement ξ ·∇

√
Ψn vs.

√
Ψn for

an ideal kink mode without a wall computed by MARS-K, MISHKA, and PEST for the Solov’ev 1, Solov’ev 3, and ITER
cases, in PEST coordinates. The Fourier harmonics following this definition have more physical meaning (a better
separation between resonant and non-resonant harmonics) than using equal-arc coordinates. The same quantity is
plotted for the same equilibria in equal-arc coordinates in Figs. 22b, 24b, and 26b. Figure 24b can be directly compared
to Fig. 10(a) of Ref. [14].
As an approximation to the fluid RWM, MISK uses the marginally stable ideal kink with an ideal wall, as calculated

by PEST by moving the wall position progressively inward until the marginal point is found11. This eigenfunction
is a good approximation to the fluid RWM14. Figures 23, 25, and 27 compare the poloidal Fourier harmonics of
the normal displacement ξ · ∇

√
Ψn vs.

√
Ψn for a maginally stable ideal kink mode with an ideal wall computed by

PEST to the fluid RWM eigenfunctions computed by MARS-K and MISHKA, for the three equilibria in PEST coordinates
and equal-arc coordinates. Note that the PEST representation of ξ can be found in Ref. [61]. Since MISHKA does not
include a resistive wall, it is not included in this comparison. Figure 25b can be directly compared to the fluid RWM
eigenfunction in Fig. 10(b) of Ref. [14].
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FIG. 22. Poloidal Fourier harmonics of the normal displacement for an ideal kink mode without a wall for the Solov’ev 1
equilibrium, as computed by PEST, in a) PEST and b) equal-arc coordinate systems.
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FIG. 23. Poloidal Fourier harmonics of the normal displacement for the marginally stable ideal kink mode with an ideal wall
for the Solov’ev 1 equilibrium, as computed by PEST and DCON, and the fluid RWM eigenfunction as computed by MARS-K, in
a) PEST and b) equal-arc coordinate systems.
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FIG. 24. Poloidal Fourier harmonics of the normal displacement for an ideal kink mode without a wall for the Solov’ev 3
equilibrium, as computed by MARS-K, MISHKA, and PEST, in a) PEST coordinates, and by PEST in b) equal-arc coordinates.
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FIG. 25. Poloidal Fourier harmonics of the normal displacement for the marginally stable ideal kink mode with an ideal wall
for the Solov’ev 3 equilibrium, as computed by PEST and DCON, and the fluid RWM eigenfunction as computed by MARS-K, in
a) PEST and b) equal-arc coordinate systems.
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FIG. 26. Poloidal Fourier harmonics of the normal displacement for an ideal kink mode without a wall for the ITER equilibrium,
as computed by MARS-K, MISHKA, and PEST, in a) PEST coordinates, and by PEST in b) equal-arc coordinates.
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FIG. 27. Poloidal Fourier harmonics of the normal displacement for the marginally stable ideal kink mode with an ideal wall
for the ITER equilibrium, as computed by PEST and DCON, and the fluid RWM eigenfunction as computed by MARS-K, in a)
PEST and b) equal-arc coordinate systems.
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VII. THE PERTURBED LAGRANGIAN

Another major part of the kinetic calculation is the perturbed Lagrangian14:

⟨H/ε̂⟩ (Ψ,Λ, l) = 1

τ̂

∮
1√

1− ΛB
B0

[(
2− 3

ΛB

B0

)
(κ · ξ⊥)−

(
ΛB

B0

)
(∇ · ξ⊥)

]
einϕ−i(l+αnq)ωbtdℓ. (52)

Here ⟨·⟩ indicates a bounce average, ϕ is the toroidal angle, and κ = b̂ ·∇b̂ is the magnetic curvature.
Similarly to how the energy integral of the frequency resonance fraction can be calculated solely based on the

frequencies and encompasses all the energy dependence of the problem, the perturbed Lagrangian can be calculated
based mostly on the eigenfunction (although ωb also appears in the phase term), and indeed is the only place in the
problem where the eigenfunction appears.
Like in Sec. V with Iε̂, we can make plots of ⟨H/ε̂⟩ vs. Λ for particular Ψ surfaces. Figure 28 shows each l component

of ⟨H/ε̂⟩ for trapped thermal ions from -2 to 2 in the Solov’ev 1 equilibrium at r/R0 = 0.08 (Ψn = 0.16), the same
surface chosen in Fig. 7. Figure 29 shows each l component of ⟨H/ε̂⟩ for trapped thermal ions from -2 to 2 in the
Solov’ev 3 equilibrium at r/R0 = 0.252 (Ψn = 0.585, q = 2.5). Figure 30 shows shows each l component of ⟨H/ε̂⟩
from -2 to 2 in the ITER equilibrium at r/R0 = 0.322 (Ψn = 0.982).
Note that like the bounce and precession frequencies, this quantity has a singularity when v∥ → 0, but it is

integrable.
It can be shown that for trapped particles in an up-down symmetric equilibrium, Im(⟨H/ε̂⟩) = 0 (which can be

seen in Figs. 28b and 29b), and that ⟨H/ε̂⟩(−l) should be equal to ⟨H/ε̂⟩(+l) (which can be seen in Figs. 28a and
29a for PENT. Although this isn’t the case for MISK for the l/n = ±1 cases, it does not affect the answer, as |⟨H⟩|2 is
used).
It is also useful to examine the constituents of ⟨H/ε̂⟩ separately. Figures 31 and 32 show κ · ξ⊥ and ∇ · ξ⊥,

respectively, as functions of θ for the Solov’ev 1 equilibrium at r/R0 = 0.08 (Ψn = 0.16). Similarly, Figs. 37 and 38
are for the Solov’ev 3 equilibrium at Ψn = 0.585 and Figs. 39 and 40 are for the Solov’ev 3 equilibrium at Ψn = 0.9.
Figures 33-36 show contours of the real and imaginary parts of κ · ξ⊥ and ∇ · ξ⊥ for the Solov’ev 3 case. Because
the quantities are presented in arbitrary units, in each of these figures (31-42) the quantities have been renormalized
between the codes to show their equivalence on the same plots.
Note that κ · ξ⊥ and ∇ · ξ⊥ are related by the definition of the perturbed parallel magnetic field B̃∥:

B̃∥ =−B
(
∇ · ξ⊥ + 2κ · ξ⊥ − ξ⊥ ·∇

(µ0p

B2

))
. (53)

Finally, one must be cautious in evaluating ∇ ·ξ⊥, as the ∂/∂ϕ component of ∇· will change sign whether one uses
n = 1 or −1.
One concern is that at rational surfaces Alfvén resonances can lead to singularities in the calculation of δWK

11.
Indeed, by plotting κ · ξ⊥ and ∇ · ξ⊥, respectively, as functions of Ψn for a given θ, as in Figs. 41 and 42 for the
Solov’ev 3 case, we can see that the rational surface is a cause of difference between the codes. In this case integration
is performed smoothly across these surfaces; no special considerations such as replacing the calculation in the vicinity
of the rational surfaces with an analytic calculation20,62 are taken. Therefore in subsection IXC when we examine
δWK as a function of Ψn for the Solov’ev 3 case, we will see that there is a difference in the final answer for δWK

between the codes that arises from the treatment of the rational surfaces. In contrast, in the ITER case, singularities
were found at the rational surface. The treatment of this issue will be discussed in subsection IXC.
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FIG. 28. a) Real and b) imaginary components of ⟨H/ε̂⟩ for trapped thermal ions for each l from -2 to 2, vs. Λ in the Solov’ev
1 equilibrium at r/R0 = 0.08 (Ψn = 0.16), calculated by MISK and PENT.
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FIG. 29. a) Real and b) imaginary components of ⟨H/ε̂⟩ for trapped thermal ions for each l from -2 to 2, vs. Λ in the Solov’ev
3 equilibrium at r/R0 = 0.252 (Ψn = 0.585, q = 2.5), calculated by MISK and PENT.
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FIG. 30. a) Real and b) imaginary components of ⟨H/ε̂⟩ for trapped thermal ions for each l from -2 to 2, vs. Λ in the ITER
equilibrium at r/R0 = 0.322 (Ψn = 0.982), calculated by MISK.
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FIG. 31. a) Real and b) imaginary components of κ · ξ⊥ vs. θ in the Solov’ev 1 equilibrium at r/R0 = 0.08 (Ψn = 0.16),
calculated by MISK, MARS-K, and PENT. The MARS-K and PENT results are renormalized by making the maximum value anywhere
in the plasma the same as the MISK maximum.
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FIG. 32. a) Real and b) imaginary components of ∇ · ξ⊥ vs. θ in the Solov’ev 1 equilibrium at r/R0 = 0.08 (Ψn = 0.16),
calculated by MISK, MARS-K, and PENT . The MARS-K and PENT results are renormalized by making the maximum value anywhere
in the plasma the same as the MISK maximum.
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FIG. 33. Re(κ · ξ⊥) in the Solov’ev 3 equilibrium, calculated by a) MISK and b) MARS-K. The MARS-K results are renormalized
by making the maximum value at r/R0 = 0.252 (Ψn = 0.585, q = 2.5) the same as the MISK maximum.

FIG. 34. Im(κ · ξ⊥) in the Solov’ev 3 equilibrium, calculated by a) MISK and b) MARS-K. The MARS-K results are renormalized
by making the maximum value at r/R0 = 0.252 (Ψn = 0.585, q = 2.5) the same as the MISK maximum.



30

FIG. 35. Re(∇ · ξ⊥) in the Solov’ev 3 equilibrium, calculated by a) MISK and b) MARS-K. The MARS-K results are renormalized
by making the maximum value at r/R0 = 0.252 (Ψn = 0.585, q = 2.5) the same as the MISK maximum.

FIG. 36. Im(∇ · ξ⊥) in the Solov’ev 3 equilibrium, calculated by a) MISK and b) MARS-K. The MARS-K results are renormalized
by making the maximum value at r/R0 = 0.252 (Ψn = 0.585, q = 2.5) the same as the MISK maximum.
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FIG. 37. a) Real and b) imaginary components of κ·ξ⊥ vs. θ in the Solov’ev 3 equilibrium at r/R0 = 0.252 (Ψn = 0.585, q = 2.5),
calculated by MISK, MARS-K, and PENT. The MARS-K and PENT results are renormalized by making the maximum value on this
surface the same as the MISK maximum.
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FIG. 38. a) Real and b) imaginary components of∇·ξ⊥ vs. θ in the Solov’ev 3 equilibrium at r/R0 = 0.252 (Ψn = 0.585, q = 2.5),
calculated by MISK, MARS-K, and PENT. The MARS-K and PENT results are renormalized by making the maximum value on this
surface the same as the MISK maximum.
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FIG. 39. a) Real and b) imaginary components of κ · ξ⊥ vs. θ in the Solov’ev 3 equilibrium at Ψn = 0.9, calculated by MISK

and MARS-K. The MARS-K results are renormalized by making the maximum value on the Ψn = 0.585 surface the same as the
MISK maximum.
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FIG. 40. a) Real and b) imaginary components of ∇ · ξ⊥ vs. θ in the Solov’ev 3 equilibrium at Ψn = 0.9, calculated by MISK

and MARS-K. The MARS-K results are renormalized by making the maximum value on the surface the Ψn = 0.585 same as the
MISK maximum.
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FIG. 41. a) Real and b) imaginary components of κ · ξ⊥ vs. ΨN in the Solov’ev 3 equilibrium at θ = π/2, calculated by MARS-K,
MISK, and PENT. The MARS-K results are renormalized by making the maximum value on the Ψn = 0.585 surface the same as
the MISK maximum. The PENT results are renormalized by making the value on the Ψn = 0.585 surface at this θ (π/2) the same
as the MISK value.
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FIG. 42. a) Real and b) imaginary components of ∇·ξ⊥ vs. ΨN in the Solov’ev 3 equilibrium at θ = π/2, calculated by MARS-K,
MISK, and PENT. The MARS-K results are renormalized by making the maximum value on the Ψn = 0.585 surface the same as
the MISK maximum. The PENT results are renormalized by making the value on the Ψn = 0.585 surface at this θ (π/2) the same
as the MISK value.
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VIII. FLUID δW TERMS

δW∞ and δWb are the fluid terms calculated with the wall at infinity or the actual “experimental” location b. In
this study we will use a conformal wall, so that b is the distance of the wall away from the plasma boundary, in units
of r/a, and the normalized wall position is rw/a = 1 + b. The absolute value of these δW quantities as calculated by
different codes is arbitrary; what really matters are the ratios. Therefore in this section we will report the quantity
γ̂−1
f = −δWb/δW∞, which is the inverse fluid growth rate, normalized by the wall time.
Let us now also define δW∞ = δWF + δWS + δW∞

V , the sum of the plasma fluid, surface, and vacuum perturbed
potential energies when the wall is placed at infinity, and δWb = δWF + δWS + δW b

V , the sum of the plasma fluid,
surface, and vacuum δW terms when the wall is placed at a specific location b. The PEST code uses the VACUUM
code63 to calculate the δWV terms. The plasma fluid terms are equal regardless of the wall position. The surface
term arises when there is a finite pressure gradient at the plasma boundary. In the Solov’ev cases there is a gradient
at the boundary, however the surface term is neglected for the purpose of this benchmarking exercise.
Once δW∞ is found, δWb, and therefore γ̂−1

f , can be examined as a function of rw/a. This is shown for the three

cases in Fig. 43a for the ideal kink mode and can be directly compared to Ref. [14], Fig. 3, for the Solov’ev 1 case.
Here we will instead use the eigenfunction for the marginally stable ideal kink mode with an ideal wall in PEST and
DCON (approximating the fluid RWM) and the fluid RWM in MARS-K. Figure 43b shows γ̂−1

f vs. rw/a for these cases.
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FIG. 43. The inverse fluid growth rate, normalized by the wall time, vs. normalized conformal wall position for the three cases
for: a) the ideal kink, and b) the marginally stable ideal kink mode with an ideal wall (PEST, DCON) or the fluid RWM (MARS-K).
PEST results are shown in blue, MARS-K results in red, and DCON results in green. The circle markers shown in b) indicate the
values at the wall positions chosen for comparison.

For the Solov’ev 1 case we choose conformal walls with rw/a = 1.15, and for Solov’ev 3 rw/a = 1.10 (see Fig. 2),
to be consistent with Ref. [14]. For the ITER case, we choose a conformal wall with rw/a = 1.5, which approximates
the actual ITER wall. See Fig. 4 for illustrations of these walls. In PEST the fluid δW quantities have a dependency
on the selection of Ψlim. For the Solov’ev cases Ψlim = 1 can be used, but for the ITER case here we have used
Ψlim = 0.9976, which results in qedge = 6.96168. The results are given in Table III.
Note that γ̂f is slightly lower for MARS-K than PEST or DCON in the Solov’ev 1 case, and slightly higher in the Solov’ev

3 case. This will impact the kinetic growth rate, as will be seen in section X. For the ITER case DCON finds a lower
γ̂f , due to a lower δW∞. However, this difference also impacts the normalization of the kinetic effects in PENT so that
in the end the ITER kinetic γτw for PENT will be close to that of MARS-K and MISK.
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rw/a δWF /(−δW∞) δW b
V /(−δW∞) γ̂−1

f = δWb/(−δW∞)

Solov’ev 1 1.15
-1.814 3.001 1.187

-1.793 2.915 1.122

-1.792 2.912 1.120

Solov’ev 3 1.10
-2.257 4.087 1.830

-2.210 4.547 2.337

-2.202 4.519 2.316

ITER 1.50
-6.284 6.966 0.682

0.677

-8.844 9.700 0.856

TABLE III. MARS-K results are red, PEST results are blue, and DCON results are green. δW∞
V /(−δW∞) can be inferred from

1 + δWF /(−δW∞).
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IX. KINETIC δWK

For trapped Maxwellian particles, the kinetic δW is given by

δWK = −
√
π

2

∫ Ψa

0

nT

B0

∫ B0/Bmin

B0/Bmax

τ
∑
l

|⟨H/ε̂⟩|2Iε̂dΛdΨ, (54)

where one can see that δWK involves the previously defined quantities Iε̂ and ⟨H/ε̂⟩ in a straightforward way.
Once again, the absolute value of δWK is meaningless, so we will report the values found as −δWK/δW∞, broken

into its various contributions in Table IV and Figs. 44 and 45 for Solov’ev 1 and Figs. 47 and 48 for Solov’ev 3. Figures
46 and 49 show the l = 0 ions and electrons added together for the Solov’ev 1 and 3 cases, respectively. There is a
large cancelation between the two, so notice that the scales are smaller than in Figs. 44 and 47, respectively. Finally,
Figs. 50, 51, and 52 are the same plots, for the ITER case.
Generally, and as expected, one can see that the kinetic resonance between the mode and the precession motion of

particles is strongest when the plasma rotation is small (ωE0/ωA0
<∼ 0.1), while the resonance with the bounce motion

of trapped particles or circulating motion of passing particles is strongest at higher rotation (ωE0/ωA0
>∼ 0.1). The

codes agree well in the calculation of each term, especially for the precession resonance and especially for the Solov’ev
1 case, which has no rational surfaces. The rational surfaces are integrated over in the Solov’ev 3 case for each code.
This is historically how PENT (with smoothed rational contribution) and MARS-K (unsmoothed) have been operated;
MISK was operated like MARS-K in this case. This leads to the discrepancy between the codes in the bounce and
circulating terms seen in Fig. 48, as we will discuss in Sec. IXC. Finally, in the ITER case singular Alfvén resonances
at the rationals have been removed for both MARS-K and MISK, and this leads to good agreement between each code
in each term. This is how MISK has historically been operated (although the analytical replacement of the rational
surface contribution normally calculated by MISK20 was not included here); MARS-K was operated like MISK in this
case. The PENT results are somewhat higher in magnitude in Figs. 50-51, due the lower δW∞ normalization factor.
We have seen that this difference also affects the fluid growth rate, however, making γ−1

f higher as well. Therefore
the growth rate from PENT will be consistent with that of MISK and MARS-K in the end.
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FIG. 44. a) Real and b) imaginary δWK for l = 0 trapped thermal ions and electrons for the Solov’ev 1 case.
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FIG. 45. a) Real and b) imaginary δWK for l ̸= 0 trapped thermal ions and for circulating ions for the Solov’ev 1 case.
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FIG. 46. a) Real and b) imaginary δWK for l = 0 trapped thermal ions and electrons together for the Solov’ev 1 case.
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FIG. 47. a) Real and b) imaginary δWK for l = 0 trapped thermal ions and electrons for the Solov’ev 3 case.
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FIG. 48. a) Real and b) imaginary δWK for l ̸= 0 trapped thermal ions and for circulating ions for the Solov’ev 3 case.
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FIG. 49. a) Real and b) imaginary δWK for l = 0 trapped thermal ions and electrons together for the Solov’ev 3 case.
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FIG. 50. a) Real and b) imaginary δWK for l = 0 trapped thermal ions and electrons for the ITER case.
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FIG. 51. a) Real and b) imaginary δWK for l ̸= 0 trapped thermal ions and for circulating ions for the ITER case.
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FIG. 52. a) Real and b) imaginary δWK for l = 0 trapped thermal ions and electrons together for the ITER case.
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A. The CGL Limit

There are three separate possible ways to calculate δW in the CGL, or high-frequency limit (|ωE − ω| → ∞). The
first is to just increase ωE to a large value in the codes, as is effectively accomplished in Figs. 44, 45, 47, and 48 on the
right hand side when ωE0/wA0 = 100. The total fluid δWCGL is found by adding the various components in this limit.
In this case circulating electrons and trapped electrons with a bounce (l ̸= 0) resonance become important, so they are
included as well. The second method is to add the various components while taking the analytical limit Iε = 15

√
π/8

described in subsection VA1. The third method is to solve for δWCGL directly using the CGL perturbed pressures36:

δWCGL =
1

2

∫
5

3
p |∇ · ξ⊥|2 dV +

1

2

∫
1

3
p |∇ · ξ⊥ + 3κ · ξ⊥|2 dV, (55)

and then use the pressure and the quantities ∇ ·ξ⊥ and κ ·ξ⊥ from section VII to calculate the fluid δWCGL directly.
The relevant terms from the above equation are shown for the Solov’ev 3 case in Figs. 53 and 54. The results of these
three methods are given in Table V for each case. Again, the differences between codes in the Solov’ev 3 case are due
to integration over the rational surfaces.

ωE0/ωA0 = 100 Iε = 15
√
π/8 Fluid δWCGL

Solov’ev 1
1.57× 10−1 1.57× 10−1

1.54× 10−1 1.54× 10−1 1.56× 10−1

1.55× 10−1

Solov’ev 3
1.98× 100 1.84× 100

1.09× 100 1.07× 100 1.01× 100

6.31× 10−1

ITER
6.11× 100 6.55× 100

6.72× 100 6.67× 100 6.53× 100

9.89× 100

TABLE V. δWK/(−δW∞) in the CGL limit (|ωE − ω| → ∞). MARS-K results are red, MISK results are blue, and PENT results
are green. All values are real. For the ITER case surfaces within ∆q = ±0.1 of all rational surfaces are excluded for MARS-K

and MISK.
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FIG. 53. 5
3
p|∇ · ξ⊥|2 (arbitrary units) in the Solov’ev 3 equilibrium (for use in δWCGL), calculated by a) MISK and b) MARS-K.

The MARS-K results are renormalized by making the maximum value at r/R0 = 0.252 (Ψn = 0.585, q = 2.5) the same as the
MISK maximum.

FIG. 54. 1
3
p|∇ · ξ⊥ +3κ · ξ⊥|2 (arbitrary units) in the Solov’ev 3 equilibrium (for use in δWCGL), calculated by a) MISK and b)

MARS-K. The MARS-K results are renormalized by making the maximum value at r/R0 = 0.252 (Ψn = 0.585, q = 2.5) the same
as the MISK maximum.
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B. Convergence vs. Damping Parameter

A damping parameter in the denominator of the resonance operator can come either from the finite growth rate of
the RWM (γ), or from collisonality (νeff). δWK should converge to the same value as that of the “ideal” case without
any damping, when these damping terms approach zero. Figures 55-58 show the results of such a convergence study
for the Solov’ev 1 case for the l = 0 trapped ion and electron terms, the l ̸= 0 trapped ion term, and the circulating
ion term. These cases show how both MARS-K and MISK converge as damping goes to zero (as is the case throughout
the rest of this document) and also that the codes give similar results with increased damping.
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FIG. 55. Convergence of a) Re(δWK) and b) Im(δWK) for trapped thermal ions with l = 0 versus damping for the Solov’ev 1
case, as calculated by MARS-K and MISK.
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FIG. 56. Convergence of a) Re(δWK) and b) Im(δWK) for trapped thermal electrons with l = 0 versus damping for the
Solov’ev 1 case, as calculated by MARS-K and MISK.
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FIG. 57. Convergence of a) Re(δWK) and b) Im(δWK) for trapped thermal ions with l ̸= 0 versus damping for the Solov’ev 1
case, as calculated by MARS-K and MISK.
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FIG. 58. Convergence of a) Re(δWK) and b) Im(δWK) for circulating ions versus damping for the Solov’ev 1 case, as calculated
by MARS-K and MISK.
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C. Contribution to δWK as a Function of Ψ

One can gain understanding of the importance of the core and edge regions, as well as rational surfaces, by examining
the contribution to δWK as a function of Ψ. Figures 59, 60, and 61 show Re(d(δWK/(−δW∞))/dΨ) vs. Ψ in the
Solov’ev 1 case for l = 0 trapped thermal ions, l ̸= 0 trapped thermal ions, and circulating ions, respectively. Figures
62, 63, and 64 show the same quantities for the Solov’ev 3 case and Figs. 65, 66, and 67 for ITER. In each case, part
a) is for the nominal rotation level, while part b) is at the CGL limit. The integrals of these curves represent the
values Re(δWK/(−δW∞)) (which are given in Table IV).
One can see that there is generally very good agreement between the codes for the Solov’ev 1 case, as expected

because the results in Figs. 44-46 agreed very well as well. For the Solov’ev 3 case, it becomes clear that the differences
that were seen in the results in Fig. 48 are arising almost exclusively from the difference in the codes’ calculations at
the q = 3 rational surface. No special treatment of the rational surfaces was performed for the Solov’ev 3 case (they
were simply integrated through), and in spite of this disagreement, the final calculated δWK values (and γτw, as will
be seen in the next section) are not so unreasonably different. Finally, however, in Figs. 66 and 67 for the ITER
case, it is clear that the rational surface contributions are not only very different between the codes, but unreasonably
large for MISK and MARS-K. This is a well-known issue where singularities arise at the rational surfaces due to Alfvén
resonances, and it was pointed out years ago11. Generally, the treatment of this issue in MISK has been to remove the
singular rational surface contributions calculated in this way by imposing a layer with width ∆q around each rational
surface, and then adding a separately calculated analytical Alfvén layer contribution20. Note that this separate,
analytical calculation was not added here, but ∆q = 0.1 was used for both MISK and MARS-K in this ITER case.
Historically MARS-K has included the rational surface singularities in its calculations, which may account for some
historical differences between the codes’ results, particularly when MARS-K was operated in its perturbative mode.
PENT, meanwhile, does not have the same kind of singularities at rational surfaces as MARS-K and MISK (for example

in Figs. 66 and 67). However, this is because the underlying IPEC calculations of the eigenfunctions are “regularized”
in all cases at the rational surfaces with a characteristic width parameter σ such that ξ → ξ(m−nq)2/((m−nq)2+σ),
where m and n are the poloidal and toroidal mode numbers, respectively64. Essentially this approach smoothes the
contribution to δWK in a given width near the rational surfaces rather than simply removing it when necessary as
in the MISK approach. One can see the effect of the IPEC approach for example in the Solov’ev 3 case (where the σ
regularization was employed in IPEC but the ∆q cut-off was not yet employed in MISK and MARS-K) in Figs. 41 and
42, which leads to the lower values in Figs. 48, 63 and 64. Another kind of singularity does appear in PENT, however,
with the restrictions applied in this benchmarking exercise (zero collisionality and ωD = 0 when l ̸= 0). These occur
when the denominator of the energy integral goes to zero in the circulating particle case. Here, these type of spikes
have been removed from both the ITER and Solov’ev 3 cases in PENT by multiplying the profiles by δq4/(δq4+0.014),
where in this case δq is the difference between q(Ψ) and integer values. This type of suppression is typically not
applied in PENT as it is not necessary when collisionality and ωD are non-zero.
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FIG. 59. Re(d(δWK/(−δW∞))/dΨ) vs. Ψ for l = 0 trapped thermal ions in the Solov’ev 1 case at a) ωE0/ωA0 = 1× 10−2, and
b) the CGL limit, as calculated by MARS-K, MISK, and PENT.
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FIG. 60. Re(d(δWK/(−δW∞))/dΨ) vs. Ψ for l ̸= 0 trapped thermal ions in the Solov’ev 1 case at a) ωE0/ωA0 = 1× 10−2, and
b) the CGL limit, as calculated by MARS-K, MISK, and PENT.
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FIG. 61. Re(d(δWK/(−δW∞))/dΨ) vs. Ψ for circulating thermal ions in the Solov’ev 1 case at a) ωE0/ωA0 = 1× 10−2, and b)
the CGL limit, as calculated by MARS-K, MISK, and PENT.



47

      
 

 

 

 

 
q=3MARS-K

MISK

PENT

a)

0.0 0.2 0.4 0.6 0.8 1.0
Ψn

0.0

0.5

1.0

1.5

2.0
R

e[
d

(δ
W

K
)/

d
Ψ

]/
(-

δW
in

f)       

 

 

 

 

 

      
 

 

 

 

 
q=3MARS-K

MISK

PENT

b)

0.0 0.2 0.4 0.6 0.8 1.0
Ψn

0.00

0.01

0.02

0.03

0.04

R
e[

d
(δ

W
K
)/

d
Ψ

]/
(-

δW
in

f)       

 

 

 

 

 

FIG. 62. Re(d(δWK/(−δW∞))/dΨ) vs. Ψ for l = 0 trapped thermal ions in the Solov’ev 3 case at a) ωE0/ωA0 = 1× 10−2, and
b) the CGL limit, as calculated by MARS-K, MISK, and PENT.
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FIG. 63. Re(d(δWK/(−δW∞))/dΨ) vs. Ψ for l ̸= 0 trapped thermal ions in the Solov’ev 3 case at a) ωE0/ωA0 = 1× 10−2, and
b) the CGL limit, as calculated by MARS-K, MISK, and PENT.
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FIG. 64. Re(d(δWK/(−δW∞))/dΨ) vs. Ψ for circulating thermal ions in the Solov’ev 3 case at a) ωE0/ωA0 = 1× 10−2, and b)
the CGL limit, as calculated by MARS-K, MISK, and PENT.
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FIG. 65. Re(d(δWK/(−δW∞))/dΨ) vs. Ψ for l = 0 trapped thermal ions in the ITER case at a) ωE0/ωA0 = 1.62× 10−2, and
b) the CGL limit, as calculated by MARS-K, MISK, and PENT. The profiles shown are from before the ∆q corrections are applied
at the rational surfaces.
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FIG. 66. Re(d(δWK/(−δW∞))/dΨ) vs. Ψ for l ̸= 0 trapped thermal ions in the ITER case at a) ωE0/ωA0 = 1.62× 10−2, and
b) the CGL limit, as calculated by MARS-K, MISK, and PENT. The profiles shown are from before the ∆q corrections are applied
at the rational surfaces.
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FIG. 67. Re(d(δWK/(−δW∞))/dΨ) vs. Ψ for circulating thermal ions in the ITER case at a) ωE0/ωA0 = 1.62× 10−2, and b)
the CGL limit, as calculated by MARS-K, MISK, and PENT. The profiles shown are from before the ∆q corrections are applied at
the rational surfaces.
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X. GROWTH RATE AND MODE ROTATION FREQUENCY

In the dispersion relation (Eq. 1), the change in potential energy due to kinetic effects, δWK , in general has both
real and imaginary parts. The real part of ω is the mode rotation frequency, and is given by:

ωrτw =− Im(δWK)(δWb − δW∞)

(δWb +Re(δWK))2 + (Im(δWK))2
(56)

=−
Im(δWK/(−δW∞))(γ−1

f + 1)

(γ−1
f +Re(δWK/(−δW∞)))2 + (Im(δWK/(−δW∞)))2

, (57)

and solving for the imaginary part, we find the normalized growth rate:

γτw =− δW∞δWb + (Im(δWK))2 + (Re(δWK))(δW∞ + δWb +Re(δWK))

(δWb +Re(δWK))2 + (Im(δWK))2
(58)

=−
−γ−1

f + (Im(δWK/(−δW∞)))2 + (Re(δWK/(−δW∞)))(γ−1
f − 1 +Re(δWK/(−δW∞)))

(γ−1
f +Re(δWK/(−δW∞)))2 + (Im(δWK/(−δW∞)))2

. (59)

The results are given in Table VI and Figs. 68, 69, and 70. They are in generally good agreement. Note that in
Fig. 68a and in Fig. 69a at lower rotation the MARS-K γτw differs from MISK and PENT due to difference in the fluid,
not kinetic, δW terms, as can be seen by the dashed lines. For the Solov’ev 1 case, over a large range of rotation the
growth rate is not substantially changed from the fluid case. This is consistent with the previous analysis in Ref. [14],
although, again, the cases are different because of the different eigenfunction used, as well as the different ωE profile.
The Solov’ev 3 case (Fig. 69) shows a larger influence of the kinetic effects. In particular, at high rotation the growth
rate is reduced to different levels in each code’s calculation due to the different levels of circulating and bounce
resonant kinetic effects calculated. Intermediate plasma rotation is the least stable. The ITER case (Fig. 70) takes
this trend even farther, as the kinetic resonances at high rotation with bounce and circulating particles is enough in
each code to stabilize the plasma, while the precession resonance at low rotation is as well. The intermediate rotation
between these resonances remains vulnerable to instability. One must recall that this is an incomplete calculation for
ITER, however, as various simplifications have been made in the benchmarking process, including, most notably, the
lack of collisions and energetic or alpha particles. Nevertheless, the codes agree in the basic underlying calculation
of kinetic effects and all support the present understanding that both high and low rotation kinetic resonances are
stabilizing to the RWM, but intermediate plasma rotation is potentially susceptible to instability.

rw/a γτw ωτw

Solov’ev 1 1.15
8.09× 10−1 1.82× 10−2

8.58× 10−1 1.11× 10−2

8.57× 10−1 1.86× 10−2

Solov’ev 3 1.10
4.73× 10−1 1.14× 10−1

3.73× 10−1 5.07× 10−2

3.84× 10−1 8.02× 10−2

ITER 1.50
8.19× 10−1 8.99× 10−2

4.64× 10−1 4.51× 10−1

4.89× 10−1 8.66× 10−2

TABLE VI. MARS-K results are red, MISK results are blue, PENT results are green. For the Solov’ev 1 and 2 cases the nominal
value of ωe0/ωA0 = 1 × 10−2 is used. For the ITER case, the nominal value of ωe0/ωA0 = 1.62 × 10−2 is used, and surfaces
within ∆q = ±0.1 of all rational surfaces are excluded for MARS-K and MISK.
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FIG. 68. a) γτw (with γfτw shown in dashed lines) and b) ωτw for the Solov’ev 1 case, as calculated by MARS-K, MISK, and
PENT.
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FIG. 69. a) γτw (with γfτw shown in dashed lines) and b) ωτw for the Solov’ev 3 case, as calculated by MARS-K, MISK, and
PENT.
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FIG. 70. a) γτw (with γfτw shown in dashed lines) and b) ωτw for the ITER case, as calculated by MARS-K, MISK, and PENT.
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FIG. 71. γτw vs. scaled experimental rotation profile as calculated by MISK for two NSTX equilibria near marginal RWM
stability with the effect of the n = 1 rational surface singularities integrated numerically (dashed) or removed and replaced by
an analytical calculation at the surfaces (solid).

XI. COMPARISON OF MISK CALCULATIONS TO NSTX EXPERIMENTS

NSTX experiments have demonstrated unstable RWMs and MISK calculations have been used to understand those
experimental results19–22,24,43,44. Here we demonstrate that the benchmarked MISK calculations of thermal particle
kinetic effects (now including collisions) can come close to predicting the marginal stability point. Figure 71 shows
the calculated growth rate vs. scaled experimental rotation for two discharges from time points just before an unstable
RWM caused a disruption (from Ref. [44]). In both cases MISK predicts that these discharges are close to marginal
stability with the experimental rotation profile (ωϕ/ω

exp
ϕ = 1), and that both will go unstable with a slightly lower

rotation, which is what actually happens in the experiment since the rotation is decreasing in time in these discharges
and there is some further decrease from the equilibrium time points analyzed to the unstable time. We also can
demonstrate, by the dashed lines in Fig. 71, that by integrating over the rational surfaces, rather than performing
the calculation analytically, the code predicts greater stability, which is inconsistent with the experimental evidence.
Note that when the singularities are large enough and δWK is larger than the fluid terms in Eq. 1, γτw tends towards
a highly stable value of unity.

XII. CONCLUSIONS

Calculations of the kinetic effects on resistive wall mode stability with the MARS-K, MISK, and PENT codes have been
benchmarked. During the course of this process, changes and improvements have been made to each of the codes.
The successful development of the PENT code was concurrent with, and highly dependent upon this process. An error
in the precession frequency calculation was successfully corrected in the MISK code. This change has been tested and
found to have a moderate impact on previously published results because the precession frequency is much less than
the rotation frequency in NSTX. Finally, an error in computing a particle phase factor in the bounce resonance of
thermal ions in the MARS-K code was found and corrected.
The benchmarking exercise considered three cases: two analytical Solov’ev equilibria and a projected ITER equilib-

rium. The various important frequencies of the problem, including bounce and precession drift freqencies, have been
compared and show good agreement between the codes and also with analytical limits. These frequencies are used
in the energy integral of the frequency resonance fraction, which forms the heart of the problem of kinetic effects on
RWM stability. Analytical solutions of the energy integral are possible under certain constraints, and comparisons
show that there is good agreement between the numerical and analytical approaches, as well as between the codes.
The marginally stable ideal kink (fluid RWM) eigenfunctions, which are not affected by kinetic effects in the pertur-
bative calculations performed here, are compared and show good agreement for the three equilibria. The terms in the
perturbed Lagrangian using the eigenfunction, κ · ξ⊥ and ∇ · ξ⊥, also generally agree between the codes, although
differences exist at the rational surfaces. Ideal stability calculations of the fluid δW terms and fluid growth rates of
the mode are consistent.
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Finally, the kinetic δW terms, growth rates, and mode rotation frequencies have been compared between the
codes for the two analytical Solov’ev equilibria and the projected ITER equilibrium. Both MARS-K and MISK show
convergence as damping is reduced to zero. The codes all show good agreement in the most important kinetic terms:
the l = 0 precession drift resonant (at ωE ≪ ωA) trapped thermal ions and electrons. For bounce-resonant trapped
particles and circulating ions, with resonance for ωE

>∼ 0.1ωA, the codes show some disagreement at the rational
surfaces of the Solov’ev 3 case when the surfaces are integrated over. This is also reflected in a disagreement of the
real part of δWK as ωE → ∞ in the CGL limit. In the ITER case, once the singularities at the rational surfaces have
been removed all three codes show good agreement in δWK .
The calculations shown here support the present understanding that RWM stability can be increased by kinetic

effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while
intermediate rotation can remain susceptible to instability. This can be most easily seen when the kinetic effects are
used to calculate a growth rate and mode rotation frequency of the RWM. For example in Fig. 68a, for the Solov’ev
1 case, the growth rate is reduced at high and low ωE . The results are in good agreement in this case, with the
difference for γτw coming mostly from the difference in the fluid growth rate (dashed lines). For the Solov’ev 3 case,
the codes also show fairly good agreement in γτw and ωτw, with the difference in γτw at low ωE again mostly due to
the fluid growth rate, and the difference at high ωE from the differences in the magnitude of the circulating and bounce
resonances (Fig. 48), which comes from the rational surfaces. For MARS-K the rational surface contribution is large
enough to provide marginal stability in this case. In the ITER case (Fig. 70) once the rational surface singularities
are removed, the codes all agree quite well. The kinetic resonances at high rotation with bounce and circulating
particles is enough in each code to stabilize the plasma, while the precession resonance at low rotation is as well. The
intermediate rotation between these resonances remains vulnerable to instability.
Comparisons between the benchmarked calculations of the MISK code and experimental marginal stability points

from NSTX demonstrate that the kinetic stability code calculations are useful for predicting the stability of experi-
mental devices. Additionally, it is conclusively shown that the numerically computed inclusion of the effect of rational
surface singularities can lead to an unrealistically large predicted kinetic stabilization effect and incorrect prediction
of very stable plasmas.
The successful benchmarking between MARS-K, MISK, and PENT gives great confidence that these codes are correctly

calculating the theoretically important expected kinetic effects of resistive wall mode stability. To the extent that
this model is then validated against present experimental evidence of RWM stability, as has been done, for example,
between MISK calculations and NSTX experiments, one can then project the stability of future devices with confidence.
This is important because reliable, validated resistive wall mode stability calculations are critical for ITER, which
can not tolerate disruptions.
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