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Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predict-
ing RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance.
Benchmarking the calculations of the MARS-K [Y. Liu, et al., Phys. Plasmas 15, 112503 (2008)], MISK [B. Hu,
et al., Phys. Plasmas 12, 057301 (2005)], and PENT [N. Logan, et al., accepted by Phys. Plasmas (2013)] codes
for two Solov’ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement
between the codes. The important particle frequencies, the frequency resonance energy integral in which they
are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally
consistent between the codes. The most important kinetic effect at low rotation is the resonance between the
mode rotation and the trapped thermal particle’s precession drift, and MARS-K, MISK, and PENT show good
agreement in this term. The different ways the rational surface contribution was treated historically in the
codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma
rotation. Calculations from all of the codes support the present understanding that RWM stability can be
increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce
and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of
benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK
calculations of near marginal growth rates for experimental marginal stability points from the National Spher-
ical Torus Experiment (NSTX) [M. Ono, et al., Nucl. Fusion 40, 557 (2000)]. c⃝ 2014 American Institute of
Physics. [DOI: 00.0000/0.0000000]

I. INTRODUCTION

Tokamak fusion plasmas generate energy most effi-
ciently when the ratio of plasma stored energy to mag-
netic confining field energy is high. In this regime, the
plasma is subject to magnetohydrodynamic (MHD) kink-
ballooning instabilities. This can lead to a disruption of
the plasma current and a loss of confinement on the rela-
tively short Alfvén time scale. However, the growth rate
of this mode can be slowed quite considerably by the
presence of a close-fitting wall around the plasma. The
magnetic perturbation from the mode can penetrate the
wall during mode growth, and the time scale for that
penetration is much longer than the Alfvén time scale.
When the mode is converted to the more slowly grow-
ing mode in this way, it is called the resistive wall mode
(RWM)1.
Originally it was thought that the presence of a resis-

tive wall could slow down the kink-ballooning mode, but
that the RWM itself could not be stabilized. Experiments
soon found, however, that tokamaks could be stably op-
erated above the so-called “no-wall limit”2,3. It was then
postulated theoretically that the RWM can be stabilized
by a combination of plasma rotational inertia and an en-
ergy dissipation mechanism4–6. Simple models proved to
be insufficient to explain experimental results3,7–9, and
theoretical investigation has turned to the inclusion of
kinetic effects to explain the plasma stability10–32.
One can calculate the stability of the RWM by de-

termining ω = ωr + iγ, the complex mode frequency,
where ωr is the real mode rotation frequency, and γ is the
growth rate. A standard approach is to change the force
balance equation into an equation in terms of changes of
kinetic and potential energies (δW ), and then to write
a dispersion relation for the complex mode frequency ω
in terms of these δW terms33–35. Specifically applica-
ble to the RWM is the so-called “low-frequency” energy
principle34–38, which requires the inclusion of the parti-
cle drift frequencies, as these can not be considered to
be much lower than the mode frequency. The approach
of solving for the δW terms has the advantage of clarity
in distinguishing the various stabilizing and destabilizing
effects. In this work we will concentrate on the change of
potential energy that arises from the perturbed kinetic
pressure of thermal particles.

The RWM dispersion relation can be written10,11,14:

(γ + iωr)τw =− δW∞ + δWK

δWb + δWK
. (1)

Here τw is the current decay time in the resistive wall,
δW∞ is the sum of the plasma fluid and vacuum per-
turbed potential energies when the wall is placed at in-
finity, and δWb is the sum of the plasma fluid and vac-
uum δW s when the wall is placed at a specific location b.
These two contributions to the energy principle have been
theoretically developed for years39, and computer codes
have been written to solve for them, such as PEST40. The
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kinetic term, δWK is given by

δWK =− 1

2

∑
j

∫
ξ∗⊥ ·

[
∇ · P̃K

]
dV, (2)

where ξ⊥ is the mode displacement. In the fluid approach
the perturbed pressure is given in terms of macroscopic
quantities. In the kinetic approach the components of
the pressure tensor P̃K , p̃⊥ and p̃∥, are defined by taking

moments of the perturbed distribution function f̃ . The
kinetic approach allows for resonances between the mode
rotation and particle precession, bounce, or transit fre-
quencies that can transfer energy from the mode to the
particles and thereby maintain the stability of the RWM.
The goal of this work is to benchmark calculations of

kinetic resistive wall mode stability. This effort was ini-
tiated and conducted through an International Tokamak
Physics Activity (ITPA) of the MHD Stability group.
Three codes, MARS-K14,41, MISK11, and PENT42 are com-
pared in detail in this work. The PENT code was largely
written during this effort. This work builds off of, and
greatly expands upon, a previous effort in which the
MARS-K and MISHKA+HAGIS43,44 codes were benchmarked
in Ref. [14], Sec. III-C.
The ITPA MHD Stability Group proponents decided

upon a group of common equilibria to test, and a set
of constraints were determined to allow direct compar-
isons between the codes. It was decided to compare code
calculations for two analytical equilibria, one a simple,
near-circular shape with no n = 1 rational surfaces, and
one a shaped equilibria with two n = 1 rational surfaces,
as well as an ITER case. In each case the focus was on the
calculation of rotational resonances of thermal particles,
so collisions were ignored and energetic particles were not
included. Though obviously important, it is beyond the
scope of this work to fully compare stability calculations
to present experimental results, though MISK calculations
of RWM stability have been compared to both National
Spherical Torus Experiment45 (NSTX)19–22,24,46–48 and
DIII-D9,25 experimental results, while MARS-K calcula-
tions have been performed for RWM stability in DIII-
D18,41 and the RFX-mod reversed field pinch27,49,50, as
well as for ideal wall mode stability in NSTX51. Finally,
comparisons between the benchmarked MISK calculations
and NSTX results are also presented here. Benchmarked
and experimentally validated calculations of RWM sta-
bility are important to confidently project the stability
of future devices such as ITER, which can not tolerate
disruptions.
The paper is organized as follows. First, the MARS-K,

MISK, and PENT codes are briefly described in Sec. II. In
Sec. III the equilibrium configurations that are tested are
described. In Sec. IV various important frequencies of the
plasma are compared, which are then used in Sec. V in
the energy integral of the frequency resonance fraction.
The three different eigenfunctions used are described in
Sec. VI, and are then used in Sec. VII in calculating

the perturbed Lagrangian. The results of the resistive
wall mode stability analysis are presented, starting in
Sec. VIII with the fluid δW terms, in Sec. IX with the ki-
netic δW term, and in Sec. X with the RWM growth rate
and rotation frequency. Finally, the benchmarked calcu-
lations of the MISK code are briefly compared to NSTX
experiments in Sec. XI.

II. CODES

Various codes have been developed that can incorpo-
rate kinetic effects in stability calculations. In addition
to the three described here, one prominent example is
the combination of the MISHKA43 and HAGIS44 codes.

A. MARS-K

MARS-K (Magnetohydrodynamic Resistive Spectrum -
Kinetic code) is a toroidal MHD-kinetic hybrid stability
code14,41 that solves the eigenvalue problem derived from
the linearized single-fluid ideal/resistive MHD equations
with toroidal flow, self-consistently including the drift ki-
netic effects in full toroidal geometry. This approach al-
lows the kinetic effects associated with the thermal or
energetic particles to consistently modify the mode eigen-
function, which could significantly influence the mode
stability and structure in certain circumstances31. In
this work, however, MARS-K will be used in a perturbative
mode.
MARS-K simulates a plasma surrounded by a pure vac-

uum region, a resistive wall, and a set of magnetic coils.
With these features, the code can be applied to the physi-
cal study and support of experiments on various subjects
such as MHD instabilities (e.g. resistive wall mode and
tearing mode), and plasma response to external fields
(e.g. resonant field amplification and resonant magnetic
perturbation).

B. MISK

The MISK, or Modification to Ideal Stability by Ki-
netic effects, code11 calculates the change in potential
energy of the plasma due to kinetic effects, δWK . Along
with the fluid δW terms calculated using a marginally
stable eigenfunction with the PEST code40, the disper-
sion relation or energy principle including kinetic effects
is used to predict the growth rate of the resistive wall
mode. This approach assumes that kinetic effects do not
change the eigenfunction, and that the mode growth rate
and frequency are small, so their nonlinear inclusion is
unimportant. Cases which are above the ideal no-wall
limit, and therefore would be unstable without kinetic
effects, are examined. MISK has been used extensively
(see Refs. [19–25, 47, and 48]), and close quantitative
agreement has been found between theoretically expected
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FIG. 1. a) The Solov’ev 1 equilibrium and b) the Solov’ev 3 equilibrium, showing flux surfaces at the edge (blue) and
r/R0 = 0.02, 0.08, and 0.18 (red). These last three are compared to their equivalent circles (dashed). Finally, conformal walls
having rw/a = 1.15 for Solov’ev 1 and rw/a = 1.10 for Solov’ev 3 are shown in black (see section VIII).
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FIG. 2. The Solov’ev 1 and Solov’ev 3 equilibrium q profiles.

RWM marginal stability points and RWM stability in
NSTX and DIII-D.

C. PENT

The PENT (Perturbed Equilibrium Nonambipolar
Transport) code42 calculates the toroidal torque due to
neoclassical toroidal viscosity (NTV)52 in a nonaxisym-
metric equilibrium53. In the perturbative approach with
no mode rotation, the toroidal torque due to nonam-
bipolar transport and the drift kinetic energy are related
by a simple equivalency principle54,55, Tϕ = 2inδWK .
The PENT code was developed in conjunction with the

IPEC56 (Ideal Perturbed Equilibrium Code) and DCON57

codes, which have been widely used and found to be in
good agreement with experiment58–62. Although origi-
nally developed to couple externally applied 3D fields to
the plasma, this suite of codes is used with an equiva-
lent approach to MISK and PEST for this benchmark. The
fluid δW is calculated using the marginally stable eigen-
function from DCON which is used in IPEC to calculate the
3D perturbed equilibrium. The kinetic term calculated
in PENT is then included in Eq. 1, which is valid only
in the same small perturbation limit as the equivalency
principle.

III. EQUILIBRIA

Three equilibria were used for this benchmarking exer-
cise: an analytical equilibrium with nearly circular sur-
faces and no rational surfaces, an analytical equilibrium
with shaped surfaces and two n = 1 rational surfaces,
and finally a projected ITER equilibrium.

A. Solov’ev Equilibrium

The Solov’ev equilibrium63,64 is an analytical equilib-
rium solution to the Grad-Shafranov equation for the
polodial current function F = RBt (with R the major ra-
dius and Bt the toroidal magnetic field), and the pressure
profile P (ψ), where ψ is the magnetic flux coordinate. In
MARS-K, the Solov’ev equilibrium is written14:
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F (ψ) = 1. (3)

µ0

B2
0

P (ψ) = −1 + κ2

κR3
0q0

ψ. (4)

ψ =
κ

2R3
0q0

[
R2Z2

κ2
+

1

4

(
R2 −R2

0

)2 − ϵ2aR
4
0

]
. (5)

This ψ ranges from a negative value at the axis (−ψ0)
to zero at the edge. A normalized flux can be written
Ψn = ψ/ψ0 + 1, which goes from 0 on axis to 1 at the
edge. In addition to B0, the magnetic field on axis, and
R0, the major radius of the plasma axis, three quantities
must be specified: the elongation κ, the safety factor on
axis q0, and the inverse aspect ratio ϵa = a/R0, where
a is the plasma minor radius. The plasma boundary is
specified in (R,Z) coordinates by:

Rb = R0 (1 + 2ϵa cos θ)
1
2 , (6)

Zb =
R0ϵaκ sin θ

(1 + 2ϵa cos θ)
1
2

. (7)

Note also that for the Solov’ev cases, the q profile can
be analytically determined from65:

q = q0
2

π

√
1 + 2ϵr
1− 4ϵ2r

E(k), (8)

where E is the complete elliptic integral of the second
kind, k ≡

√
4ϵr/(1 + 2ϵr), and εr = (R−R0)/R0.

MISK uses the PEST code and PENT uses the DCON code
to provide the eigenfunction and fluid δW terms. The
two differ in that the PEST calculation includes both po-
tential and kinetic energy terms in δW , which allows typ-
ically resonant eigenfunction displacements to bridge the
corresponding rational surfaces. DCON only includes a
potential energy δW , and resonant components of eigen-
function displacement are forced to zero at the corre-
sponding rational surfaces. The Solov’ev equilibrium can
be explicitly specified in PEST and DCON.

1. Solov’ev 1

The equilibrium designated “Solov’ev 1” was used in
Ref. [14], and is near-circular (Fig. 1a), with no n = 1 ra-
tional surfaces (Fig. 2). It is specified by the parameters
κ = 1, q0 = 1.2, and ϵa = 0.2, and has a qedge = 1.41371.
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FIG. 3. The ITER equilibrium, showing a flux surface at the
edge (blue) and r/R0 = 0.18 (red). Also shown are the ITER
double wall (black), and a conformal wall with rw/a = 1.5
(green).

2. Solov’ev 3

The equilibrium designated “Solov’ev 3” was also used
in Ref. [14]. This equilibrium is shaped (Fig. 1b), and
contains the q = 2 and 3 rational surfaces within the
plasma (Fig. 2). It is specified by the parameters κ = 1.6,
q0 = 1.9, and ϵa = 0.33, and has a qedge = 3.263.

B. ITER

The ITER equilibrium utilizes the current design of
the ITER target for 9 MA operation66, with βN = 2.9.
It has R0 = 6.2 m, B0 = 5.3 T, the shape shown in Fig. 3
and the q profile shown in Fig. 4.

IV. FREQUENCY COMPARISONS

A. Density, Temperature, Pressure, and Rotation
Frequency Profiles

We will assume for the Solov’ev cases that there are no
energetic particles, only thermal ions and electrons, and
that the ion and electron densities and temperatures are
equal, ne = ni and Te = Ti. Also, for the purposes of
determining P from Eq. 4, we now set R0 = 1m and B0 =
1T. Then the pressure has the form P = P0(1−Ψn), with
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FIG. 4. The ITER equilibrium q profile.

P0 = 2.210× 104 Pa for Solov’ev 1, and P0 = 4.273× 104

Pa for Solov’ev 3.

Finally we must specify the density profile. For the
Solov’ev cases, we use n = n0(1 − 0.7Ψn). Then
the density on axis, n0, is determined by specifying
(ωci/ωA)0, where the Alfvén frequency on axis ωA0 =
B0/(R0

√
µ0mini0) and the ion cyclotron frequency on

axis ωci0 = eB0/mi = 47.9×106 krad/s. For the compar-
isons here, we will use (ωci/ωA)0 = 121, to be consistent
with Ref. [14], even though this results in the values of
ωA0 = 395.9 krad/s and the unrealistically high density
n0 = 1.518 × 1021 m−3. Note that the normalized mass
density ρ/ρ0 = 1−Ψn also affects the eigenfunction.

The temperature profile is then determined from
T = P/(2n). For the Solov’ev cases this means T =
(P0/2n0)(1−Ψn)/(1− 0.7Ψn).

For the Solov’ev cases we will use the E×B frequency
profile ωE = ωE0 (1−Ψn), and a range of constant values
of ωE0. We will take ωE0/ωA0 = 1 × 10−2 or ωE0 =
3.959 krad/s as a nominal value. The toroidal rotation
frequency, ωϕ can then be found by a radial force balance
neglecting poloidal rotation so that ωϕ = ωE+ωi

∗N+ωi
∗T ,

where ωi
∗N and ωi

∗T are defined in the next subsection.

For the ITER case instead of using analytically pre-
scribed functions for the pressure, density, temperature,
and rotation, we will use profiles determined for the 9
MA ITER steady-state scenario target. Additionally, the
ITER case will have three separate species, each with
their own pressure: ions, electrons, and alpha particles.
The following are given, as profiles of Ψ: nα/(ne+ni), ne,
Te, Ti, Pα/(Pe+Pi), and ωϕ. The ion density is taken to
be equal to the electron density, ie. quasineutrality is not
enforced. The ion and electron pressures are determined
from Pe = neTe, and Pi = niTi, which then determines
Pα as well.

For the ITER case instead of using analytically pre-
scribed functions for the pressure, density, temperature,
and rotation, we will use profiles determined for the 9 MA
ITER target. The deuterium ion density is taken to be
equal to the electron density (energetic particles, alpha
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FIG. 5. Normalized profiles of density, temperature, and ro-
tation for the ITER case.

particles, and tritium are not considered here). Figure 5
shows the profiles of density, temperature, and rotation,
normalized to their axis values: ni0 = ne0 = 7.22× 1019

m−3, Ti0 = 31.32 keV, Te0 = 34.25 keV, and ωϕ0 = 37.34
krad/s. The nominal value of ωE0/ωA0 calculated from
these parameters is 1.62× 10−2 for the ITER case.

B. Diamagnetic Frequencies

The density and temperature gradient compo-
nents of the diamagnetic frequency are defined in
[rad/s] as: ωj

∗N = −Tj/(Zjenj)(dnj/dΨ), ωj
∗T =

−1/(Zje)(dTj/dΨ), where Zje is the electric charge of
species j. For the Solov’ev equilibria these can be writ-
ten analytically as:

ωi
∗N = −ωe

∗N =
0.7T0/e

(−ψ0)

(
1−Ψn

(1− 0.7Ψn)
2

)
, (9)

ωi
∗T = −ωe

∗T =
0.3T0/e

(−ψ0)

(
1

(1− 0.7Ψn)
2

)
, (10)

C. Collision Frequency

Although in general collisionality can impact kinetic
stability calculations, and there are various ways of ex-
pressing collisionality22, for the comparisons here both
ion and electron collision frequencies are taken to be zero.
This decision was taken to avoid the complication of the
effect of collisionality and to allow focus on the compu-
tation and comparison of other physics aspects in the
codes.
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FIG. 6. a) Ion bounce frequency and b) ion magnetic precession drift frequency calculated by MISK, MARS-K, and PENT compared
to the large aspect ratio approximation for the ϵr = 0.08 surface of the Solov’ev 1 case, vs. Λ. The left branch of a) is for
circulating ions and the right branch is for trapped ions. Plot b) can be directly compared to the same one produced by MARS-K

in Ref. [14], Fig. 1(b).
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FIG. 7. a) Ion bounce frequency and b) ion magnetic precession drift frequency calculated by MISK, MARS-K, and PENT compared
to the large aspect ratio approximation at the outer surface of the Solov’ev 3 case, vs. Λ. The left branch of a) is for circulating
ions and the right branch is for trapped ions.

D. Bounce Frequency

The general formula for the particle bounce frequency
is ωb = 2π/(

∫
(dℓ/v∥), where ℓ is the particle trajectory

and v∥ is the parallel velocity.
In the large aspect ratio limit, the particle bounce fre-

quency can be written13,67:

ωb√
2ε/mi

=

√
2ϵrΛ

4qR0

π

K(k)
(trapped), (11)

ωb√
2ε/mi

=

√
1− Λ + ϵrΛ

2qR0

π

K(1/k)
(circulating). (12)

where Λ is a pitch angle variable defined by Λ = µB0/ε
with µ = mv2⊥/2B the magnetic moment and ε = mv2/2
the kinetic energy of the particle (m and v are the mass

and velocity of the particle), K is the complete elliptic
integral of the first kind, and

k =

[
1− Λ + ϵrΛ

2ϵrΛ

] 1
2

. (13)

Figure 6a shows the normalized, dimensionless ion
bounce frequencies calculated by MISK, MARS-K, and PENT
compared to the large aspect ratio approximation, using
the Solov’ev 1 equilibrium at the ϵr = 0.08, Ψn = 0.160
surface vs. Λ. Figure 7a shows the normalized ion bounce
frequencies compared to the large aspect ratio approxi-
mation, using the Solov’ev 3 equilibrium at the ϵr = 0.33,
Ψn = 1 surface (the plasma boundary) vs. Λ. Figure 8a
shows the normalized ion bounce frequencies using the
ITER equilibrium at the ϵr = 0.322, ψn = 0.982 sur-
face (very close to the plasma boundary) vs. Λ. All three
codes are in quantitative agreement, and significantly de-
viate from the large aspect ratio case due to their general
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FIG. 8. a) Ion bounce frequency and b) ion magnetic precession drift frequency calculated by MISK, MARS-K, and PENT at the
ϵr = 0.322 surface (very close to the outer surface) of the ITER case, vs. Λ. The left branch of a) is for circulating ions and
the right branch is for trapped ions.
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FIG. 9. a) Ion bounce frequency and b) ion magnetic precession drift frequency calculated by MISK, MARS-K, and PENT at
maximum Λ compared to the deeply trapped particle limit for the Solov’ev 1 and 3 cases, vs. ϵr.

treatment of the magnetic topology.

In the limit of deeply trapped particles, one can show
that for the Solov’ev equilibrium the bounce frequency
can be written65:

ωb√
2ε/mi

=
1

q0

(
F 2

1 + 2ϵr
+
κ2ϵ2r
q20

)−1

×

[
F 2ϵr

2 (1 + 2ϵr)
+
κ2ϵ3r
q20

+

(
1− κ2

)
ϵ2r

2q20
(1 + 2ϵr)

] 1
2

(14)

Figure 9a shows the normalized ion bounce frequencies
calculated by MISK, MARS-K, and PENT at maximum Λ
compared to the deeply trapped particle limit, using the
Solov’ev 1 and Solov’ev 3 equilibria vs. ϵr.

E. Magnetic Precession Drift Frequency

The general formula for the bounce-averaged magnetic
precession drift frequency comes from Ref. [68], and is
given by: ωD = 1/(Zje)(∂J/∂Ψ)/(∂J/∂ε), where J =∫
mjv∥dℓ is the equilibrium longitudinal invariant of the

particle parallel motion. This equation for ωD is broken
into two parts. Using a definition of the bounce time,
τ = ∂J/∂ε,68 we have:

ωD =
ε

Zje

1

τ

2

v2
∂

∂Ψ

(∫
v∥dℓ

)
, (15)

which eventually results in

ωD = − ε

Zje

1

τ

∫
dℓ

{
1

v∥

[
Λ

B0

∂B

∂Ψ

]
−

2v∥

v2

[
B2

θ

B

∂

∂Ψ

(
B

B2
θ

)
− 1

B2
θ

(
µ0

∂p

∂Ψ
+

F

R2

∂F

∂Ψ

)]}
,

(16)
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Equation 16 is the form for ωD used in MARS-K, with
an equivalent expression used in MISK, while PENT uses an
explicit bounce averaging of the gradient and curvature
drift velocities42. Note that at the turning points v∥ →
0 causes a singularity in Eq. 16, but this singularity is
integrable.
The large aspect ratio magnetic precession drift fre-

quency for trapped particles is13,14:

ωD

ε/(Zje)
=

2qΛ

R2
0ϵrB0

[
(2s+ 1)

E (k)

K (k)
+ 2s

(
k2 − 1

)
− 1

2

]
,

(17)

where s = (r/q)(dq/dr) is the magnetic shear and E is
the complete elliptic integral of the second kind.
Figure 6b shows the normalized magnetic ion magnetic

precession drift frequencies calculated by MISK, MARS-K,
and PENT compared to the large aspect ratio approxima-
tion, using the Solov’ev 1 equilibrium at the ϵr = 0.08,
ψn = 0.160 surface, vs. Λ. Figure 7b shows the nor-
malized ion precession drift frequencies compared to the
large aspect ratio approximation, using the Solov’ev 3
equilibrium at the ϵr = 0.33, ψn = 1 surface (the plasma
boundary), vs. Λ. Figure 8b shows the normalized ion
precession drift frequencies using the ITER equilibrium
at the ϵr = 0.322, ψn = 0.982 surface (very close to the
plasma boundary) vs. Λ. Again, for ωD all three codes
are in quantitative agreement.
Finally, in the limit of deeply trapped particles, one

can show that for the Solov’ev equilibrium the magnetic
precession drift frequency can be written65:

ωD

ε/(Zje)
=

q0
R0κϵr

(
F 2

1 + 2ϵr
+
κ2ϵ2r
q20

)−1 [
F 2

(1 + 2ϵr)2
− κ2ϵr

q20

]
(18)

Figure 9b shows the normalized ion magnetic preces-
sion drift frequencies calculated by MISK, MARS-K, and
PENT at maximum Λ compared to the deeply trapped
particle limit, using the Solov’ev 1 and Solov’ev 3 equi-
libria vs. ϵr.

V. ENERGY INTEGRAL OF THE FREQUENCY
RESONANCE FRACTION

A major part of the kinetic calculation (of P̃K in Eq. 2)
is the energy integration of the frequency resonance frac-
tion:

Iε (Ψ,Λ, l) =

∫ ∞

0

dε̂[
n
(
ω∗N +

(
ε̂− 3

2

)
ω∗T

)
+ nωE − ωr − iγ

nωD + (l + αnq)ωb − iνeff + nωE − ωr − iγ
ε̂

5
2 e−ε̂

]
.

(19)

where ε̂ = ε/T , and α = 0 for trapped particles or α = 1
for circulating particles. Here l is the bounce harmonic
and n is the toroidal mode number (not the density), and
it will be taken as n = −1 for the comparisons presented
here, to be consistent with the MARS-K geometrical con-
vention. The energy integral can be evaluated based only
upon the frequencies already described, for both ions and
electrons. Nominally, νeff = 0 as specified in subsection
IVC, and we will take ωr = 0 and γ = 0. Note that when
collisionality is zero, having a small imaginary component
(via γ) in the denominator is beneficial to avoid singu-
larities in the integration24. Since we are taking νeff = 0
and γ = 0, there are poles on the real energy axis, which
need to be accounted for properly.

If we choose a particular Ψ surface, then ω∗N , ω∗T , and
ωE are constants. The precession drift and bounce fre-
quencies are functions of both Λ and ε̂ still, as indicated
in Figs. 6 and 7.

One major historical difference between MISK and
MARS-K is that MISK performed the energy integration
numerically, whereas MARS-K performed it analytically13.
Analytical solutions are possible only under certain con-
straints. For example, νeff must not have energy depen-
dence and when l ̸= 0 one must assume ωD = 0 (ωD ≪
ωb). Since this is the approach taken in MARS-K and in
MISK’s analytical mode, we have used this assumption
in PENT and in MISK’s numerical mode for the purposes
of this benchmarking. MARS-K, however, has recently
implemented numerical integration, and can now treat
energy-dependent collisionality. Therefore both MISK and
MARS-K now have the capability to perform the energy in-
tegral either analytically or numerically. Although they
were not used in that way in the present comparisons, in
general each code can have energy-dependent collisional-
ity and both precession and bounce frequencies simulta-
neously.

Performing the energy integration, we can plot Iε as
a function of Λ. Figure 10a shows each l component of
Re(Iε) from -2 to 2 for thermal ions in the Solov’ev 1
equilibrium at r/R0 = 0.08 (Ψn = 0.16), the same sur-
face chosen in Fig. 6. Figure 10b shows the same for the
Solov’ev 3 equilibrium at r/R0 = 0.252 (Ψn = 0.585, q =
2.5). Both of these are calculated at the nominal rotation
of ωE0/ωA0 = 1× 10−2. The traces are plotted as l/n so
that they are equivalent for n = −1 or n = 1. Note that
while only the l = −2 to l = 2 bounce harmonics are
shown and the contribution decreases with increasing |l|,
many more bounce harmonics are included in the calcula-
tions in each code, to accurately capture the contribution
from bounce resonant particles.

VI. EIGENFUNCTION COMPARISON

As an approximation to the fluid RWM, MISK and
PENT use the marginally stable ideal kink eigenfunction
with an ideal wall, as calculated by PEST and DCON, re-
spectively (with differences described earlier), by moving
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FIG. 10. Real components of Iε for each l/n from -2 to 2, vs. Λ for thermal ions in the a) Solov’ev 1 equilibrium at r/R0 = 0.08
(Ψn = 0.16), and b) the Solov’ev 3 equilibrium at r/R0 = 2.52 (Ψn = 0.585, q = 2.5), calculated by MISK, MARS-K, and PENT in
a) and MISK and PENT in b). In both cases, the nominal value of ωE0/ωA0 = 1× 10−2 was used.
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FIG. 11. Poloidal Fourier harmonics of the normal displacement for the marginally stable ideal kink mode with an ideal wall
for a) the Solov’ev 1, b) the Solov’ev 3, and c) the ITER equilibria, as computed by PEST and DCON, compared to the fluid
RWM eigenfunction as computed by MARS-K, in the PEST coordinate system.

the wall position progressively inward until the marginal
point is found11. This eigenfunction is a good approx-
imation to the fluid RWM14, and has been compared
to experiment3. Figure 11 compares the poloidal Fourier
harmonics of the normal displacement ξ ·∇

√
Ψn vs.

√
Ψn

for a marginally stable ideal kink mode with an ideal wall
computed by PEST and DCON to the fluid RWM eigenfunc-
tions computed by MARS-K for the two Solov’ev equilib-
ria and the ITER equilibrium in PEST coordinates. The
Fourier harmonics following this definition have more
physical meaning (a better separation between resonant
and non-resonant harmonics) than using equal-arc coor-
dinates. Note that due to geometrical convention in the
MARS-K code, both Solov’ev eigenfunctions will be con-
sidered to have n = −1 toroidal mode numbers.

VII. THE PERTURBED LAGRANGIAN

As will be shown in Eq. 21, another major part of the
kinetic calculation is the perturbed Lagrangian14:

⟨H/ε̂⟩ (Ψ,Λ, l) = 1

τ

∮
1√

1− ΛB
B0

einϕ−i(l+αnq)ωbt

[(
2− 3

ΛB

B0

)
(κ · ξ⊥)−

(
ΛB

B0

)
(∇ · ξ⊥)

]
dℓ. (20)

Here ⟨·⟩ indicates a bounce average, ϕ is the toroidal an-

gle, and κ = b̂ ·∇b̂ is the magnetic curvature. Note that
like the bounce and precession frequencies, this quantity
has a singularity when v∥ → 0, but it is integrable.

It is useful to examine the major constituents of
⟨H/ε̂⟩ separately. Figure 12 shows an example ∇ ·
ξ⊥ contour for the Solov’ev 3 equilibrium. Note



10

FIG. 12. Re(∇ · ξ⊥) [arbitrary units] in the Solov’ev 3 equilibrium, calculated by a) MISK, b) MARS-K, and c) PENT. The MARS-K

and PENT results are renormalized by making the maximum value at r/R0 = 0.252 (Ψn = 0.585, q = 2.5) the same as the MISK

maximum.

that κ · ξ⊥ and ∇ · ξ⊥ are related by the defini-
tion of the perturbed parallel magnetic field B̃∥ =

−B
(
∇ · ξ⊥ + 2κ · ξ⊥ − ξ⊥ ·∇

(
µ0p/B

2
))
.

Finally, one must be cautious in evaluating ∇ · ξ⊥, as
the ∂/∂ϕ component of ∇· will change sign whether one
uses n = 1 or −1.
One concern is that at rational surfaces Alfvén res-

onances can lead to singularities in the calculation of
δWK

11. We have found, however, that this is not the
case at the q = 2 and q = 3 rational surfaces in the
Solov’ev 3 calculation. Therefore in this case the inte-
gration is performed smoothly across these surfaces; no
special considerations such as replacing the calculation
in the vicinity of the rational surfaces with an analytic
calculation20,69 are taken. Though no singularities were
found in this case, small differences in the eigenfunction
near the rational surfaces between the different codes can
make a difference, as will be shown in Sec. IXB. In con-
trast, in the ITER case, singularities were found at the
rational surfaces. The treatment of this issue will be dis-
cussed in Sec. IXB.

VIII. FLUID δW TERMS

δW∞ and δWb are the fluid terms calculated with the
wall at infinity or the actual “experimental” location b.
In this study we will use a conformal wall, so that b is
the distance of the wall away from the plasma bound-
ary, in units of r/a, and the normalized wall position is
rw/a = 1 + b. The absolute value of these δW quan-
tities as calculated by different codes is arbitrary (the
normalizations and units differ); what really matters are
the ratios. Therefore in this section we will report the
quantity γ̂−1

f = δWb/(−δW∞), which is the inverse fluid
growth rate, normalized by the wall time.
Let us now also define δW∞ = δWF +δWS+δW

∞
V , the

sum of the plasma fluid, surface, and vacuum perturbed
potential energies when the wall is placed at infinity, and

δWb = δWF + δWS + δW b
V , the sum of the plasma fluid,

surface, and vacuum δW terms when the wall is placed
at a specific location b. The PEST and DCON codes use the
VACUUM code70 to calculate the δWV terms. The plasma
fluid terms are equal regardless of the wall position. The
surface term arises when there is a finite pressure gradient
at the plasma boundary. In the Solov’ev cases there is
a gradient at the boundary, however the surface term is
neglected for the purpose of this benchmarking exercise.

For the Solov’ev 1 case we choose conformal walls with
rw/a = 1.15, and for Solov’ev 3 rw/a = 1.10 (see Fig. 1),
to be consistent with Ref. [14]. For the ITER case, we
choose a conformal wall with rw/a = 1.5, which approx-
imates the actual ITER wall position. See Fig. 3 for il-
lustrations of these walls. The resulting values of γ−1

f for
Solov’ev 1 are 1.187, 1.122, and 1.120 for MARS-K, MISK,
and PENT, respectively, for Solov’ev 3 are 1.830, 2.337,
and 2.316 for MARS-K, MISK, and PENT, respectively, and
for ITER are 0.682, 0.677, and 0.856 for MARS-K, MISK,
and PENT, respectively.

Note that γ̂f is slightly lower for MARS-K than PEST
or DCON in the Solov’ev 1 case, and slightly higher in the
Solov’ev 3 case. This will impact the kinetic growth rate,
as will be seen in section X. For the ITER case DCON finds
a lower γ̂f , due to a lower δW∞. However, this difference
also impacts the normalization of the kinetic effects in
PENT so that in the end the ITER kinetic γτw for PENT
will be close to that of MARS-K and MISK.

IX. KINETIC δWK

For trapped Maxwellian particles, the kinetic δW is
given by

δWK = −
√
π

2

∫ Ψa

0

nT

B0

∫ B0/Bmin

B0/Bmax

τ
∑
l

|⟨H/ε̂⟩|2Iε̂dΛdΨ,

(21)
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FIG. 13. a) Real and b) imaginary δWK for l = 0 trapped thermal ions and electrons for the Solov’ev 1 case, as calculated by
MARS-K, MISK, and PENT.
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FIG. 14. a) Real and b) imaginary δWK for l ̸= 0 trapped thermal ions and for circulating ions for the Solov’ev 1 case, as
calculated by MARS-K, MISK, and PENT.

where one can see that δWK involves the previously de-
fined quantities Iε̂ and ⟨H/ε̂⟩ in a straightforward way.

Once again we will report the values found as
δWK/(−δW∞), broken into its various contributions in
Figs. 13 and 14 for Solov’ev 1, Figs. 15 and 16 for Solov’ev
3, and Figs. 17 and 18 for ITER.

Generally, and as expected, one can see that the ki-
netic resonance between the mode and the precession
motion of particles is strongest when the plasma rota-
tion is small (ωE0/ωA0

<∼ 0.1), while the resonance with
the bounce motion of trapped particles or circulating mo-
tion of passing particles is strongest at higher rotation
(ωE0/ωA0

>∼ 0.1). The codes agree well in the calcula-
tion of each term, especially for the precession resonance
and especially for the Solov’ev 1 case, which has no ratio-
nal surfaces. The rational surfaces are integrated over in
the Solov’ev 3 case for each code. This is historically how
PENT (with smoothed rational contribution) and MARS-K
(unsmoothed) have been operated; MISK was operated
like MARS-K in this case. This leads to the discrepancy
between the codes in the bounce and circulating terms
seen in Fig. 16, as we will discuss in Sec. IXB. Finally,

in the ITER case singular Alfvén resonances at the ratio-
nals have been removed for both MARS-K and MISK, and
this leads to good agreement between each code in each
term. This is how MISK has historically been operated
(although the analytical replacement of the rational sur-
face contribution normally calculated by MISK20 was not
included here); MARS-K was operated like MISK in this
case. The PENT results are somewhat higher in magni-
tude in Figs. 17-18, due the lower δW∞ normalization
factor. We have seen that this difference also affects the
fluid growth rate, however, making γ−1

f higher as well.
Therefore the growth rate from PENT will be consistent
with that of MISK and MARS-K in the end.

A. The CGL Limit

In the Chew-Goldberger-Low (CGL), or high-
frequency limit, |ωE−ω| → ∞. Calculations in this limit
of course represent an artificial scenario, as very high ω
no longer applies to the RWM, and very high rotation
looses touch with experimental reality and additionally
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FIG. 15. a) Real and b) imaginary δWK for l = 0 trapped thermal ions and electrons for the Solov’ev 3 case, as calculated by
MARS-K, MISK, and PENT.
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FIG. 16. a) Real and b) imaginary δWK for l ̸= 0 trapped thermal ions and for circulating ions for the Solov’ev 3 case, as
calculated by MARS-K, MISK, and PENT.

we have neglected any effects of rotation on the equilib-
rium or fluid stability51. Nevertheless, in the CGL limit
δWK is purely real and independent of the mode-particle
resonances, which allows a good check on the perturbed
Lagrangian part of the problem. There are three sep-
arate possible ways to calculate δW in the CGL limit.
The first is to just increase ωE to a large value, as is ef-
fectively accomplished in Figs. 13-18 on the right hand
side when ωE0/wA0 = 100. The total fluid δWCGL is
found by adding the various components in this limit. In
this case circulating electrons and trapped electrons with
a bounce (l ̸= 0) resonance become important, so they
are included as well. The second method is to add the
various components while taking the analytical limit

Iε (Ψ,Λ, l) → ICGL
ε =

∫ ∞

0

ε̂
5
2 e−ε̂dε̂ =

15
√
π

8
. (22)

These are effectively the numerical and analytical ap-
proaches, and give the same result. The third method
is to solve for δWCGL directly using the CGL perturbed
pressures36:

δWCGL =
1

2

∫
5

3
p |∇ · ξ⊥|2 dV

+
1

2

∫
1

3
p |∇ · ξ⊥ + 3κ · ξ⊥|2 dV, (23)

and then use the pressure and the quantities ∇ · ξ⊥ and
κ · ξ⊥ from section VII to calculate the fluid δWCGL

directly. The results of these methods are given in Table
I for each case. Again, the differences between codes
in the Solov’ev 3 case are due to integration over the
rational surfaces, while the PENT ITER results are higher
due to lower δW∞.

B. δWK as a Function of Ψ

One can gain understanding of the importance of the
core and edge regions, as well as rational surfaces, by
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FIG. 17. a) Real and b) imaginary δWK for l = 0 trapped thermal ions and electrons for the ITER case.
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FIG. 18. a) Real and b) imaginary δWK for l ̸= 0 trapped thermal ions and for circulating ions for the ITER case.

ωE0/ωA0 = 100 Fluid δWCGL

Solov’ev 1
1.57× 10−1 1.57× 10−1

1.60× 10−1 1.56× 10−1

1.55× 10−1 1.47× 10−1

Solov’ev 3
1.98× 100 1.84× 100

1.10× 100 1.01× 100

6.32× 10−1 6.36× 10−1

ITER
6.11× 100 6.55× 100

6.72× 100 6.53× 100

9.88× 100 1.07× 101

TABLE I. δWK/(−δW∞) in the CGL limit (|ωE − ω| → ∞).
MARS-K results are on top, MISK results are in the middle, and
PENT results are on the bottom. All values are real. For the
ITER case surfaces within ∆q = ±0.1 of all rational surfaces
are excluded.

examining the contribution to δWK as a function of Ψ.
As an example, Fig. 19 shows Re(d(δWK/(−δW∞))/dΨ)
vs. Ψ for l = 0 and l ̸= 0 trapped thermal ions in the
Solov’ev 3 case at the CGL limit. The integrals of these
curves represent the values of Re(δWK/(−δW∞)) for l =

0 and l ̸= 0 trapped thermal ions with ωE0/ωA0 = 1 ×
102. The precession drift resonance calculation (l = 0) is
much less sensitive to the rational surface, and the good
agreement here in Fig. 19a explains the good agreement
in Fig. 15a. The bounce resonance calculation (l ̸= 0),
however, is influenced by differences at the q = 3 rational
surface. The differences in δWK between the three codes
in Fig. 16a at large rotation (on the right hand side) can
be explained entirely by this difference at the rational
surface.

Finally, however, in Fig. 20 for the ITER case (also
in the CGL limit), it is clear that the rational surface
contributions in the bounce resonance are not only very
different between the codes, but unreasonably large for
MISK and MARS-K. This is a well-known issue where sin-
gularities arise at the rational surfaces due to Alfvén res-
onances, and it was pointed out years ago11. Generally,
the treatment of this issue in MISK has been to remove
the singular rational surface contributions calculated in
this way by imposing a layer with width ∆q around each
rational surface, and then adding a separately calculated
analytical Alfvén layer contribution20. Note that this
separate, analytical calculation was not added here, but
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FIG. 19. Re(d(δWK/(−δW∞))/dΨ) vs. Ψ for a) l = 0 trapped thermal ions and b) l ̸= 0 trapped thermal ions in the Solov’ev
3 case at the CGL limit, as calculated by MARS-K, MISK, and PENT.
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FIG. 20. Re(d(δWK/(−δW∞))/dΨ) vs. Ψ for a) l = 0 trapped thermal ions and b) l ̸= 0 trapped thermal ions in the ITER
case at the CGL limit, as calculated by MARS-K, MISK, and PENT.

∆q = 0.1 was used for both MISK and MARS-K in this
ITER case. Historically MARS-K has included the ratio-
nal surface singularities in its calculations, which may ac-
count for some historical differences between the codes’
results, particularly when MARS-K was operated in its per-
turbative mode. PENT, meanwhile, does not appear to
have singularities in Fig. 20b. This is because the un-
derlying IPEC calculation of the eigenfunction has been
“regularized” at the rational surfaces with a standard and
straightforward technique by using a characteristic width
parameter σ such that ξ → ξ(m− nq)2/((m− nq)2 + σ),
where m and n are the poloidal and toroidal mode num-
bers, respectively71. Essentially this approach smoothes
the contribution to δWK in a given width near the ra-
tional surfaces rather than simply removing it as in the
MISK approach. One can see the effect of the IPEC ap-
proach for example in the Solov’ev 3 case (where the σ
regularization was employed in IPEC but the ∆q cut-off
was not yet employed in MISK and MARS-K) in the lower
values for PENT in Fig. 19.

X. GROWTH RATE AND MODE ROTATION
FREQUENCY

In the dispersion relation (Eq. 1), the change in po-
tential energy due to kinetic effects, δWK , in general has
both real and imaginary parts. The real part of ω is the
mode rotation frequency and the imaginary part is the
normalized growth rate. The results are given in Figs. 21,
22, and 23. They are in generally good agreement. Note
that in Fig. 21a and in Fig. 22a at lower rotation the
MARS-K γτw differs from MISK and PENT due to difference
in the fluid, not kinetic, δW terms, as can be seen by the
dashed lines. For the Solov’ev 1 case, over a large range
of rotation the growth rate is not substantially changed
from the fluid case. The Solov’ev 3 case (Fig. 22) shows
a larger influence of the kinetic effects. In particular, at
high rotation the growth rate is reduced to different lev-
els in each code’s calculation due to the different levels
of circulating and bounce resonant kinetic effects calcu-
lated. Intermediate plasma rotation is the least stable.
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FIG. 21. a) γτw (with γfτw shown in dashed lines) and b) ωτw for the Solov’ev 1 case, as calculated by MARS-K and MISK.
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FIG. 22. a) γτw (with γfτw shown in dashed lines) and b) ωτw for the Solov’ev 3 case, as calculated by MARS-K and MISK.
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FIG. 23. a) γτw (with γfτw shown in dashed lines) and b) ωτw for the ITER case, as calculated by MARS-K and MISK.
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δWb/(−δW∞)(= γ̂−1
f ) Re(δWK)/(−δW∞) Im(δWK)/(−δW∞) γτw ωrτw

Solov’ev 1
1.187 2.18× 10−2 −1.21× 10−2 8.09× 10−1 1.82× 10−2

1.122 2.08× 10−2 −6.82× 10−3 8.58× 10−1 1.11× 10−2

1.120 2.14× 10−2 −1.14× 10−2 8.57× 10−1 1.86× 10−2

Solov’ev 3
1.830 7.94× 10−2 −1.47× 10−1 4.73× 10−1 1.14× 10−1

2.337 8.92× 10−2 −8.96× 10−2 3.73× 10−1 5.07× 10−2

2.316 7.13× 10−2 −1.39× 10−1 3.84× 10−1 8.02× 10−2

ITER
0.682 2.41× 10−1 −4.56× 10−2 8.19× 10−1 8.99× 10−2

0.677 3.67× 10−1 −1.33× 10−1 4.64× 10−1 4.51× 10−1

0.856 3.87× 10−1 −7.23× 10−2 4.89× 10−1 8.66× 10−2

TABLE II. A summary of important benchmarked quantities. MARS-K results are on top, MISK results are in the middle, and
PENT results are on the bottom. For the Solov’ev 1 and 2 cases the nominal value of ωe0/ωA0 = 1× 10−2 is used. For the ITER
case, the nominal value of ωe0/ωA0 = 1.62× 10−2 is used, and surfaces within ∆q = ±0.1 of all rational surfaces are excluded.

The ITER case (Fig. 23) takes this trend even farther,
as the kinetic resonances at high rotation with bounce
and circulating particles is large enough in each code to
stabilize the plasma, while the precession resonance at
low rotation is as well. The intermediate rotation be-
tween these resonances remains vulnerable to instability
(as is seen in experiments20). One must recall that this
is an incomplete calculation for ITER, however, as vari-
ous simplifications have been made in the benchmarking
process, including, most notably, the lack of collisions
and energetic or alpha particles. Nevertheless, the codes
agree in the basic underlying calculation of kinetic effects
and all support the present understanding that both high
and low rotation kinetic resonances are stabilizing to the
RWM, but intermediate plasma rotation is potentially
susceptible to instability.

Finally, table II shows a summary of important bench-
marked quantities presented here. The calculated, and
normalized, ideal δWb, real and imaginary parts of the
kinetic δWK , growth rate, and mode rotation frequency
are shown for each of the three cases with their respec-
tive chosen nominal rotation profiles, for each of the three
codes. In some cases when the quantities are small, ap-
parent discrepancies in this table can seem overstated
when compared to the better-illustrated agreement in the
corresponding ωE scan plots already shown.

XI. COMPARISON OF MISK CALCULATIONS TO
NSTX EXPERIMENTS

NSTX experiments have demonstrated unstable
RWMs and MISK calculations have been used to under-
stand those experimental results19–22,24,47,48. Here we
demonstrate that the benchmarked MISK calculations of
thermal particle kinetic effects (now including collisions)
can come close to predicting the marginal stability point.
Figure 24 shows the calculated growth rate vs. scaled ex-

perimental rotation for two discharges from time points
just before an unstable RWM caused a disruption (from
Ref. [48]). In both cases MISK predicts that these dis-
charges are close to marginal stability with the exper-
imental rotation profile (ωϕ/ω

exp
ϕ = 1), and that both

will go unstable with a slightly lower rotation, which is
what actually happens in the experiment since the rota-
tion is decreasing in time in these discharges and there is
some further decrease from the equilibrium time points
analyzed to the unstable time. We also can demonstrate,
by the dashed lines in Fig. 24, that by integrating over
the rational surfaces, rather than performing the calcu-
lation analytically, the code predicts significantly greater
stability, which is inconsistent with the experimental ev-
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140094 @ 0.865

140095 @ 0.697

FIG. 24. γτw vs. scaled experimental rotation profile as cal-
culated by MISK for two NSTX equilibria near marginal RWM
stability with the effect of the n = 1 rational surface singular-
ities integrated numerically (dashed) or removed and replaced
by an analytical calculation at the surfaces (solid).
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idence, being well outside experimental error. Note that
when the singularities are large enough and δWK is larger
than the fluid terms in Eq. 1, γτw tends towards a highly
stable value of unity.

XII. DISCUSSION AND CONCLUSIONS

Calculations of the kinetic effects on resistive wall
mode stability with the MARS-K, MISK, and PENT codes
have been benchmarked. During the course of this pro-
cess, changes and improvements have been made to each
of the codes. The successful development of the PENT
code was concurrent with, and highly dependent upon
this process. An error in the precession frequency calcu-
lation was successfully corrected in the MISK code. This
change has been tested and found to have a moderate
impact on previously published results because the pre-
cession frequency is much less than the rotation frequency
in NSTX. Finally, an error in computing a particle phase
factor in the bounce resonance of thermal ions in the
MARS-K code was found and corrected.
The benchmarking exercise considered three cases: two

analytical Solov’ev equilibria and a projected ITER equi-
librium. The various important frequencies of the prob-
lem, including bounce and precession drift freqencies,
have been compared and show good agreement between
the codes and also with analytical limits. These frequen-
cies are used in the energy integral of the frequency res-
onance fraction, which forms the heart of the problem of
kinetic effects on RWM stability. Analytical solutions of
the energy integral are possible under certain constraints,
and comparisons show that there is good agreement be-
tween the numerical and analytical approaches, as well
as between the codes. The marginally stable ideal kink
(fluid RWM) eigenfunctions, which are not affected by
kinetic effects in the perturbative calculations performed
here, are compared and show good agreement for the
three equilibria. The terms in the perturbed Lagrangian
using the eigenfunction, κ · ξ⊥ and ∇ · ξ⊥, also gener-
ally agree between the codes, although differences exist
at the rational surfaces. Ideal stability calculations of the
fluid δW terms and fluid growth rates of the mode are
consistent.
Finally, the kinetic δW terms, growth rates, and mode

rotation frequencies have been compared between the
codes for the two analytical Solov’ev equilibria and the
projected ITER equilibrium. The codes all show good
agreement in the most important kinetic terms: the l = 0
precession drift resonant (at ωE ≪ ωA) trapped thermal
ions and electrons. For bounce-resonant trapped parti-
cles and circulating ions, with resonance for ωE

>∼ 0.1ωA,
the codes show some disagreement at the rational sur-
faces of the Solov’ev 3 case when the surfaces are inte-
grated over. This is also reflected in a disagreement of the
real part of δWK as ωE → ∞ in the CGL limit. In the
ITER case, once the singularities at the rational surfaces
have been removed all three codes show good agreement

in δWK .
The calculations shown here support the present un-

derstanding that RWM stability can be increased by ki-
netic effects at low rotation through precession drift res-
onance and at high rotation by bounce and transit res-
onances, while intermediate rotation can remain suscep-
tible to instability. This can be most easily seen when
the kinetic effects are used to calculate a growth rate
and mode rotation frequency of the RWM. For example
in Fig. 21a, for the Solov’ev 1 case, the growth rate is
reduced at high and low ωE . The results are in good
agreement in this case, with the difference for γτw com-
ing mostly from the difference in the fluid growth rate
(dashed lines). For the Solov’ev 3 case, the codes also
show fairly good agreement in γτw and ωτw, with the
difference in γτw at low ωE again mostly due to the fluid
growth rate, and the difference at high ωE from the dif-
ferences in the magnitude of the circulating and bounce
resonances (Fig. 16), which comes from the rational sur-
faces. For MARS-K the rational surface contribution is
large enough to provide marginal stability in this case.
In the ITER case (Fig. 23) once the rational surface sin-
gularities are removed, the codes all agree well. The ki-
netic resonances at high rotation with bounce and circu-
lating particles is large enough in each code to stabilize
the plasma, while the precession resonance at low rota-
tion is as well. The intermediate rotation between these
resonances remains vulnerable to instability.

Comparisons between the benchmarked calculations of
the MISK code and experimental marginal stability points
from NSTX demonstrate that the kinetic stability code
calculations are useful for predicting the stability of ex-
perimental devices. Additionally, it is conclusively shown
that the numerically computed inclusion of the effect of
rational surface singularities can lead to an unrealistically
large predicted kinetic stabilization effect and incorrect
prediction of very stable plasmas.

The successful benchmarking between MARS-K, MISK,
and PENT gives great confidence that these codes are cor-
rectly calculating the theoretically important expected
kinetic effects of resistive wall mode stability. To the
extent that this model is then validated against present
experimental evidence of RWM stability, one can then
project the stability of future devices with confidence.
This is important because reliable, validated resistive
wall mode stability calculations are critical for ITER,
which can not tolerate disruptions.
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