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Present deep fueling systems

* Pellets
— Extensive (~25 yr) database
— Improves performance in present machines (eg JET, PEP mode)
— High field side injection at velocity < 1km/s

e Supersonic gas
— Recent expts. in HL-1M, Tore Supra, W7-AS, others
— Injects high density gas at high velocity (~2-3 km/s)

 Plasma jet
— Recently used on Globus-M
— Injects high density plasma at high velocity (~30km/s)
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Fueling profiles from present systems

e Pellets

— Density increases by ~10-50%for r/a 0.3 to 0.8 (Re: shot 90312
on DIII-D, L. Baylor et al, nttp://www.ornl.gov/fed/pellet/ornipell.htmi)

— Large pellets increases density over a large radius
— Capability of small pellets for profile control to be established

e Supersonic gas
— Fuels from the edge with improved fueling efficiency

— Large particle inventory perturbation in present experiments
accompanied by plasma cooling

— Capability for profile control not known yet

 Plasma jet
— Similar to supersonic gas, bulk fueling at present
— Penetration into large cross-section plasmas not known
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Description of a CT Injector



A Compact Toroid (CT) Is a self-contained
toroidal plasma with embedded magnetic fields

Two types of CTs

A Spheromak has comparable poloidal / toroidal fields and
about 10% beta

— Technology easily adaptable to high rep-rate operation
— Electrode based CT formation requires attention to electrode tech.

A Field Reversed Configuration (FRC) has only poloidal field (if
It is not accelerated) and about 50% beta

— Considerably challenging pulsed power technology
— Inductive formation but CTs longer in length than Spheromaks
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Very Early Work on CT Injection

Perkins (LLNL) and Parks (GA) proposed concept for fueling

-[Perkins, Ho, Hammer, NF 28, 1365 (1988) & Parks, Phys. Reuv.
Lett. 61, 1364 (1988)]

Hammer and Hartman (LLNL) developed the accelerator
concept

-[Hammer and Hartman, Phys. Rev. Lett., 61, 2843 (1988)]

First tokamak fueling (CT size < Tok. size)
-[Raman et. al,. Phys. Rev. Lett. 73, 3101 (1994)].
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A CT is accelerated to high velocity and injected into the
target plasma to achieve deep fueling

e

-
Compact
Toroid (CT)

Tokamak Plasma

CT Penetration time: few us
CT Dissociation time: < 100 us
Density Equilibration time: 250 - 1000 us

Variable Penetration depth: edge to beyond the core
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CTs formed in a magnetized Marshall gun on
fast (~10 us) time scales
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A CT Fueler forms and accelerates CTs In a coaxial rall
gun in which the CT forms the sliding armature

CT formation region

pre-compressor
accelerator

solenoid CT plasma
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Raman et al., Fusion Techn., 24, 239 (1993)

Amount of gas injected controls CT density
Applied voltage controls CT velocity

Control system specifies fuel deposition location for each pulse
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CT Injection has the potential to meet
future high bootstrap current fraction,
steady-state discharge fueling needs

« Future high bootstrap fraction plasmas require
optimized profiles

« During high performance steady state, optimized
profiles must be maintained

* Fueling such discharges requires the prompt injection
of small amounts of fuel where needed and as often
as needed
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IPPA (FESAC) goals relevant for CT
Fueling

 3.4.1.2 Fueling Technologies: "Develop systems and
fueling techniques that are capable of providing a reliable,
flexible particle source for controlling core plasma density
and density gradients at acceptable fueling efficiencies; ...”

* Under the description of Section 3.4.1 Plasma
Technologies: "The main issues for fueling technologies are
to understand and exploit advanced fueling physics (such
as high field side launch) and demonstrate the performance
(.e., pellet speeds, density of compact toroids and
repetition rates) required to effect adequate control of the
density profile shape and high fueling efficiency"
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TdeV tokamak discharges beneficially fueled by CTs,
without causing any adverse perturbation
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R. Raman et al, NF 37, 967 (1997)
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No evidence for metallic impurity contamination of TdeV
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Edge fueling of diverted discharges triggers
Improved conflnement behawor
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Edge fueling of limited plasmas also shows a sharp
reduction in Mirnov coll oscillations
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CT induced confinement improvement also seen on STOR-M*
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Figure 3. Tokamak plasma parameters during a discharge with CT injection af £ = 15 ms. Shown are
Jrom top te bottam: plasma current, loop voltage, line averaged electron dewmsity, harizontal
Plasma position, Hy signal, energy confinement time, m =2 Mirnov coil oscillations and m = 3
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The CTF-Il injector
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A CT Injector could provide profile control
capabillity for ITER
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0.3% particle inventory perturbation, 20 Hz operation

R. Raman and P. Gierszewski, ITER Task D315 (1997), Fusion Engin. & Design

39-40 (1998) 977-985
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Possible plan for CT fueling research

o Establish CT parameters for controlled deep
fuelling (~2 yrs)

e Conduct expts. With rep-rate injector in high
beta, high bootstrap fraction discharges

* Inject tangentially to demonstrate momentum
Injection

NSTX is an excellent candidate for CT fueling research
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Simultaneous comparison of Pellet, Supersonic gas,
Plasma jet, and CT injection is possible in NSTX

System NSTX Vel. Density Ninin 100ms | N; /Ngr.
Operating (km/s) (cm-3) NSTX
Mode
Pellet 1 mm ~1 solid 5E19 7% 1
(in 5yr plan) |2.7mm ~1 solid 1.0E21 140% 1!
Supersonic |Mach 8 0.9to |5E17 2E20 28%* 2
Nozzle(Fy04) 2.4
Plasma plasma inj. | 30 0.5to 1E16 | 0.5to 1E19 |0.7to
Injector 1.4%7
CT plasma inj. | 50 0.5to 1E16 | 0.5t0 2E20 |7 to 28%*
(in 5yr plan) |CT mode |300 0.2t0o 1E16 |1to 5E19 |1.4t0 /%

[1] ORNL pellet calculator: http//www.ornl.gov/fed/pellet/Ornlpell.html
[2] V. Soukhanovskii’s e-mail to R. Raman dated 5 Aug 2003

[3] Globus-M results: A.V. Voronin et a.,P-3.110 EPS 2003
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Previous experiments too small to study localized core fueling

Marauder

CT-ITER*
JT-60U **

CTF (in storage @ PPPL)*

TRAP (FRC @ U. Wash.)

Tore Supra
ASDEX-U

JFT-2M

TdeV
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Relative sizes of various target
plasmas and CTs.

A CTF sized CT will do far
more localized fueling on a
NSTX sized plasma

*R. Raman and P.
Gierszewski, Fusion Engin.
And Design, 39-40, 977 (1998)

**R. Raman and K. Itami,
Journal of Plasma and Fusion
Research, 76. 1079 (2000)

*Will cost >$1.5M and 2-yrs to
build it from scratch



A CT injector could provide profile control capabillity

CT

Pellet

Particle invent.
perturbation for

Few %
- will not destroy optimized profiles,

Typicaly 50% on DIII-D
- large pellets needed to

deep fueling allows precision fueling capability | deposit small fraction of
to adjust profiles fuel in core
Penetration a1/B?= much easier penetrationin | Te, fast electrons

governing param.

ST asB2in NSTX is 2% of DIlI-D

- similar to tokamak

Optimal injector
location

Outboard mid-plane
- tangential injection will impart
momentum

‘True’ -Inboard mid-plane

- Improbablein a ST as
even DIII-D does not use
‘True’ inboard mid-plane

Real time density
feedback control
capability

Yes- potential for fuel deposition
location specification on each pulse
using control system request

|mprobable because large
pellets fuel entire
discharge and mechanical
nature of injector.
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Other remarks

 |gnited reactors will not use NBI. Alpha power
IS Isotropic =No momentum injection

* In a high B, high fg5 reactor some auxiliary
current drive that Is needed, which leaves
excellent density profile control as the method
of choice to optimize reactor performance
and to sustain transport barriers through
momentum injection

e CTs could be used to fill the current hole with
plasma density
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Conclusions

Excellent density profile control will enable high bootstrap
fraction, SS discharges to reach their highest potential

A flexible fueling system for high performance discharges
does not presently exist

— Inject momentum
— Fill the current hole with plasma
— Precise density profile control to optimize bootstrap current

Experimental and modeling effort will help understand
Improvements in performance that can be realized by a
flexible fueling system

NSTX fueling research involving supersonic gas injection,
pellet injection, plasma jet injection and CT injection will

facilitate an understanding of fuelin(g optimization for ITER
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Implementation of CHI on NSTX
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Non-inductive plasma startup using CHI
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Increases
reproducibility

Improves
performance

R. Raman, et al.,
PRL, 90, 075005-1(2003)



No penetration seen during Neon puffing in NSTX

He-, H-like Ne lines

(USXR) NSTX discharges are a

good target for testing
emissivity (mW/cm?) new fueling methods

5 Minor

reconnection

NSTX 2001 Research Review

t presentations.

injection
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