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Numerical design study to optimize advanced stability of
KSTAR merging present experimental results & machine design

* Motivation

2 Design optimal %Iobal MHD stabilization system for KSTAR
with application to future burning plasma devices

* Qutline
2 Free boundary equilibrium calculations

2 ldeal stability operational space for experimental profiles
0 RWM stability and VALEN-3D modeling

2 Advanced feedback control algorithm and performance

*O.Katsuro-Hopkins at al., Nucl. Fusion 47 (2007) 1157-1165.
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Korea Superconducting Tokamak Advanced Research
will study steady-state advanced tokamak operation & technology

Parameters:

* R 1.8m
° a 0.5m
e B, 85T
Touse 300'S
o | 2.0 MA

P
e T, 100~300MC

to

* Magnet:
O TF : Nb3Sn,

0 PF :NbTi
KSTAR K|
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Free boundary equilibrium: incorporates analysis
techniques used for present experiments with existing data

® Equilibrium calculations with EFIT
2 Free boundary based on machine constraint

0 Experimental (DIlI-D H-mode) & generic pressure profiles

* |deal Stability

0 DCON Kink/Ballooning Stability analysis for n=1 and n=2
modes for various wall and no-wall cases

0 Operational space in (I, $,,)

e RWM stability

0 Resistive Wall Mode (RWM) VALEN-3D passive/active
stabilization

0 advanced control methods in the presence of sensor noise
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KSTAR configuration used in EFIT calculations

* EFIT industry-standard tool

2 Free-boundary equilibria

2 Expandable range of
equilibria

 Data from KSTAR design
drawings

* Passive stabilizers/vacuum
vessel included.
2 Important for start up studies

0 Reconstructions during
events that change edge
current (e.g. ELMs)
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Equilibrium variations produced to scan (I,,,)

1.0
* Boundary shape 0 e :
0 Free-boundary equilibria with CoF DIII-D H-mode
high shaping k~2,8~0.8 I (1258411 =4.8s)
9 PINg Py 06
0 Shaping coil currents B
constrained to machine limits 0.4
: ”
: " Edge p’ =
* Pressure profile 02 : P
_ i H-mode
0 Generic “L-mode”, edge p’=0 0.0 e
1 H-mode, modeled from DIII-D 80 |
- Sample g(yy)
e q profile 9 6.0 [ variation
2 Monotonic to mild shear 40 [
reversal with B
d,>1 and (9y-9,,i,)<1 20 L
* Variations in (l,,3,,) produced 0.0 L
0 0.5=1<1.2;05=<p,=<8.0 0.0 0.5 1.0
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|deal stability(DCON): conducting wall allows significant

passive stabilization for n=1 H-mode pressure profile

9
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7 |
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with wall e o
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1 no wall
0
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N [=]
a4
2 /
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no wall
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|
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“inner” wall used

Wall-Stabilized g, is a factor Hinner "'|
of two greater then for | wall )
equilibrium without wall at |

. ~0.7 :‘/

Wall-Stabilized g, from DCON agrees
with VALEN-3D value

“outer” wall used f\\\
| er) I

[\

out

Wall-Stabilized §, > 6.5 (larger  |wail |
than the result using “inner” wall

)
at |, ~ 0.7) v

Optimistic, but does not agree with
VALEN-3D. “Inner” wall is more realistic
and should be used in DCON analysis
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L-mode pressure profile has large
n=1 stabilized region

9
g | Stablewithwal | | | < * “inner” wall used \
7 \.Z c s el oo e Wall-Stabilized region Hlﬂner
6 0 PR at lowest |, (Unfavorable wall
s [0 Joole + o for n=0 stabilization) J
BN no wall nt::: ) ’
“ me e Possible difficulty to L
3| i access with L-mode confinement.
2 L
1 L
0 ‘
0.2 04 0.6 0.8 1 1.2 1.4
Ii
,  H-modep(yjprofile  ~ Generic L-mode p(w) e n=2 stability has hlgher no-wall
g | Steblewithwall , | Stable with wall & Iower Wlth Wa” IlmltS than
| : n=1 for H-mode and L-mode
Bus | ejféi';’;?'”_ TEE pressure profile
i ‘I 0 Internal n=2 modes were
2 | : observed in NSTX during
SRR ' =1 active RWM
002‘ 0I4 | 0‘6‘ 0‘8‘ ]_IO | 1‘2I 1.4 002 0I4 0.6 0.8 I 1 1‘2 1.4 Stablllzatlon
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Conducting hardware, IVCC set up in VALEN-3D"
based on engineering drawings

n=1 RWM passive stabilization currents * Conducting structures
modeled

0 Vacuum vessel with
actual port structure

- - 0 Center stack back-

plates
AN NS A 2 Inner and outer
5 P P PAPAPAVAVANARINE R Sl divertor back-plates
== il
TR ENEE S 0 Passive stabilizer
Tt o Dz 0 PS Current bridge

P
e | | o [ [ | |

e Stabilization currents
dominant in PS

0 40 times less
resistive than nearby
conductors.

IVCC (RWM) control coils
(upper,middle,lower)

‘Bialek J. et al 2001 Phys. Plasmas 8 2170
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VALEN 3-D code reproduces n=1 DCON f3.
ideal wall limit

108 ¢

=By coN) By (DCON) e |mportant cross-check
5L 1 s - VALEN-3D/DCON calibration
=1 Wall e Equilibri .
! oad | quilibrium B,, scan with [=0.7
~ 10t | stablized | H-mode pressure profile '
% 103 L ' Passive e DCON n=1 B, limits:
% - VALEN 0 Bnno-wall =26
2 102? computed B! wall —
S ok a pva'=4.8
< 107 I
x e VALEN-3Dn=1 g "
100 L 0 4.77 <p v <5.0
' VALEN-3D 0 Range generated by various
10- RWM eigenfunctions from
2 3 4 5 6 7 8 equilibria near
By= 5.
Bx
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IVCC allows active n=1 RWM stabilization

near ideal wall.
e Active n=1 RWM

108 e—— . stabilization capability with
g ! ﬁlﬂlrc:"'“ﬂ*;a'l (DCON) i BNwaII (DCON)
5 ; i/ i/ __ Rnowall
0 § i i C/J’ = /))/i};ll ﬁ/;l)nowall >98%
~ 104k i : :
e  F
PR 0 Optimal ability for mode
c - l l Active
S L | 9oV . gain (V/G) 0 Mid-plane IVCC used
5 - S
S . [ 01 10 10 e Equilibrium B, scan with
E 10t / l=0.7 H-mode pressure
- K profile
100 :
E | | VALEN-3D e Computed g, limits
10-1 = L 0 Bnno-wall — 256
2 3 4 SBN 6 / 8 o Bl = 4.76
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Power estimates bracket needs for KSTAR RWM control

Proportional
controller

gain

Unloaded IVCC
L=10uH
R=0.86mOhm
L/R=12.8ms

FAST IVCC circuit
L=13uH
R=13.2mOhm
L/R=1.0ms

=KSTAR

White noise (1.6-2.0G RMS) NSTX 120047 AB, sensors
(RMS values) (RMS values)

Co  luoc(A)  VieelV)  Puge(W) hoelA)  ViveelV) — Proc(W)
80% 30 1.6 45 362 0.7 253
95% 41 2.0 82 430 0.8 307
80% 20.9 1.56 30.0 1.9e3 24.9 62e3
95% 28.3 1.78 50.6 9e3 119 1.8e6
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Power estimates bracket needs for KSTAR RWM control

controller

Proportional gain

Unloaded IVCC
L=10uH
R=0.86mOhm
L/R=12.8ms

FAST IVCC circuit
L=13uH
R=13.2mOhm
L/R=1.0ms

Cﬁ
80%
95%

80%
95%

/

LQG
controller

White noise (1.6-2.0G RMS)

(RMS values)

e (A)

Vivee(V)

PecW)

30 / 29

1.6/0.8

45 | 24

41/ 35

2.0/0.9

82 / 34

20.9

1.56

30.0

28.3

1.78

50.6

NSTX 120047 AB, sensors
(RMS values)
oelA)  ViveelV)  Pieg(W)
362 0.7 253
430 0.8 307
1.9e3 24.9 62e3
9e3 119 1.8e6

* |Initial results using advanced Linear Quadratic Gaussian (LQG) controller yield
factor of 2 power reduction for white noise.

* LQG controller consists of two steps:

0 Balanced Truncation of VALEN state-space for fixed 8,

0 Optimal controller and observer design based on the reduced order system
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State-space control approach may allow
superior feedback performance

* VALEN circuit equations after including plasma stability effects the fluxes at the
wall, feedback coils and plasma are given by

-

®, =L, I, +L, -1, +L, -1,
® =L, -1, +L,-1,+L, I,
® =L -1 +L, -1 +L -I,

* Equations for system evolution are given by

L, L, L, . I\ (R, O 0) (71, (0
"fﬁv {ﬁ :Cﬁa I I,1=]0 R, 9 I [+|V,
L. L. L) to o R (O
X = AX + Bii
* |n the state-space form ic . N
y=Cx

- - - -

- - T - -
where ¥=(I, I, I,); A=-L"-R B=L"I;

g
I
N

—

& measurements Y = P, are sensor fluxes
* Classical control law with proportional gain defined as i =-G Y

=KSTAR
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~Balanced Truncation significantly reduces
VALEN state-space [-#-+5

y =Cx

* Measure of system controllability and observability is given
by controllability and observability grammians for stable
Linear Time-Invariant (LTIl) Systems

I = f:eATBBTeATId‘L' I = f:eATTCTCeATdt
* Can be calculated by solving continuous-time Lyapunov
equations:
Al +FAT+BBT=O ATFO+FOA+CTC=O
. . . o 0 0
* Balanced realization exists forevery . _. |, - | ©9>9
controllable & observable system Ty o | forixi

e Balanced truncation reduces % (55) (
VALEN state space from several 1t W)\
thousand elements to ~15 or less 5-(C. c2>(;)+m
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HSV spectrum of KSTAR VALEN state-space suggests a

reduction of stable part of the system to just 2 balanced states

107
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107
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2 4

10 10°

Frequency rad/sec

10

# of niodes

LQG controller uses 4 central IVCC & 16 mid-plane poloidal sensors
Clear gap in HSV spectrum

Largest SV includes the full system frequency response up to an RWM
passive growth rate.
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Closed System Equations with Optimal Controller and Optimal

Observer based on Reduced Order Model

Measurement
noise T
x = Ax + Bulg
Full order VALEN
model Y= C,x =@
x=AX+Bu+K . (y-y
Optimal observer . rt Mt ! (=)
y=Cx+Du
E
Optimal controller u=-K x
C
: <= Closed loop continuous system
x) B A -BK C, x) N 0 )a) allows to
s . 0 Test if Optimal controller and observer
& KfC F X Kf stabilizes?original full order model
F = Ar — KfCr — (Br — KfDr)KCCr 0 Verify robustness with respect to f,

0 Estimate RMS of steady-state currents,
voltages and power
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Advanced controller methods planned to be tested
on NSTX with future application to KSTAR

RWM sensors (B))

* VALEN NSTX Model includes

Stabilizer 0 Stabilizer plates for kink
plates mode stabilization

0 External mid-plane control
coils closely coupled to
vacuum vessel

2 Upper Bp sensors in actual
locations

AN

0 Compensation of control
field from sensors

L

g% 0 Experimental Equilibrium
AT reconstruction (including
MSE data)

* Present control systemon
NSTX uses Proportional Gain

RWM active stabilization coils
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Advanced control technigues suggests significant feedback
performance improvement for NSTX up to B./B2"= 95%

Experimental (control off) Experimental (control on)

Feedback

* (Classical proportional | (B collapse) | Withowall [
feedback methods 1.E+04 ¢ p—— K | V:fa i
0 VALEN modeling of i ' owall Advanced

feedback systems agrees
with experimental results

0 RWM was stabilizedupto ~ 1.E+03 -

M-P sensors

active control
< > !

passive

B, = 5.6 In experiment. growth
o i
* Advanced feedback 15 f |
control may improve c 1.E+02 |
feedback performance % _ g :
0 Optimized state-space (5 — [

controller can stabilize up
to C,=87% for upper Bg
sensors and up to C,=95% 1.E+01 -

for mid-plane sensors

dvanced
Feedback
Bp sensors

active
feedback

N

*

0 Uses only15 modes for
optimal observer and
controller design 1.E+00

4 4.5 5 5.5 6 6.5 7 7.5
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Next steps and future work on the KSTAR
stability analysis

* Expand equilibrium / ideal stability analysis as needed

2 Collaborate on equilibrium reconstructions of first
plasmas

* Closer definition of RWM control system circuit by
interaction with KSTAR engineering team

* Improved noise model for KSTAR sensor noise
* LQG controller with plasma rotation for KSTAR

* LQG controller tests on NSTX with application to KSTAR
RWM control system design

* Critical latency testing for KSTAR RWM control
=KSTAR
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KSTAR is capable of producing long-
pulse, high f,, stability research

* Machine designed to run high 3, plasmas with low |. and
significant plasma shaping capability

* Large wall-stabilized region to kink/ballooning modes with
B,/ p,ro-wal =2 at highest B, predicted for the device

0 Co-directed NBI, passive stabilizers allow kink stabilization

* Active IVCC mode control system provide strong RWM
control

2 IVCC design allows active n=1 RWM stabilization at very
high Cp>98%

* Fast IVCC circuit for stabilization is possible at reasonable
power levels

=K STAR—-————7———————
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Optimal controller and observer based on reduced order
VALEN model reduce power and achieve higher 3

Controller: u=-K X

T
Minimize Performance Index: J-= f (?c'(r)Qr(t)?c(tH ﬁ'(T)Rr(T)ﬁ(T))dT —> min
0.,R, - state and control weighting matrix,

Controller gain for the steady-state can be calculated as K =R'B'S

where S s solution of the controller
Riccati equation SA, +A;S-SB,R'B/S+Q, =0

Observer: x=Ai+Bu+K,(y-Cz3)

C e . . E{(x-X)(x-x)" T),T <t — min
Minimize error covariance matrix {( X ) ‘y( ) }

where K,=PC'W™' s Kalman Filter gain and
P s solution of observer

T Tyyr -1 T
Riccati equation AP+ PA -PCW CP+V" =0

vV, W plant and measurement noise covariance matrix.
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Noise on RWM sensors sets control system power

—

e (Gaussian white noise

0 ~1.5Gauss RMS, based on noise in
DIll-D RWM Bp Sensors

White noise, 1.5G rms

0 Minimum estimate of control power
consumption

AB, (G)
AP OMN B OO

* Perfect response to RWM

* No other coherent modes

&

e Experimental sensor input NSTX 120047
0 NSTX B, sensor during RWM active ‘

—
o

stabilization

0 Maximum estimate of control system
power consumption

AB."=1 (G)
O () I (8)) Qo

* DC offset from resonant field
amplification; stray field from passive
plate currents

° The AB/B, larger in ST than at higher
apsect ratio

0 01 02 03 04 05
time interval (s)
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